
Coconut
Release v1.2.0 [Colonel]

Sep 24, 2016

Contents

1 Coconut Frequently Asked Questions 1
1.1 Can I use Python modules from Coconut and Coconut modules from Python? 1
1.2 What versions of Python does Coconut support? . 1
1.3 Help! I tried to write a recursive iterator and my Python segfaulted! 2
1.4 If I’m already perfectly happy with Python, why should I learn Coconut? 2
1.5 How will I be able to debug my Python if I’m not the one writing it? 2
1.6 I don’t like functional programming, should I still learn Coconut? 2
1.7 I don’t know functional programming, should I still learn Coconut? 2
1.8 I don’t know Python very well, should I still learn Coconut? . 3
1.9 Why isn’t Coconut purely functional? . 3
1.10 Won’t a transpiled language like Coconut be bad for the Python community? 3
1.11 I want to contribute to Coconut, how do I get started? . 3
1.12 Why the name Coconut? . 3
1.13 Who developed Coconut? . 3

2 Coconut Tutorial 5
2.1 Introduction . 6

2.1.1 Installation . 6
2.2 Starting Out . 7

2.2.1 Using the Interpreter . 7
2.2.2 Using the Compiler . 7
2.2.3 Using IPython/ Jupyter . 8
2.2.4 Case Studies . 9

2.3 Case Study 1: factorial . 9
2.3.1 Imperative Method . 10
2.3.2 Recursive Method . 10
2.3.3 Iterative Method . 12
2.3.4 addpattern Method . 13

2.4 Case Study 2: quick_sort . 14
2.4.1 Sorting a Sequence . 15
2.4.2 Sorting an Iterator . 15

2.5 Case Study 3: vector Part I . 17
2.5.1 2-Vector . 17
2.5.2 n-Vector Constructor . 17
2.5.3 n-Vector Methods . 18

2.6 Case Study 4: vector_field . 21
2.6.1 diagonal_line . 21
2.6.2 linearized_plane . 22

i

2.6.3 vector_field . 22
2.6.4 Applications . 23

2.7 Case Study 5: vector Part II . 24
2.7.1 __truediv__ . 24
2.7.2 .unit . 24
2.7.3 .angle . 25

2.8 Filling in the Gaps . 26
2.8.1 Lazy Lists . 26
2.8.2 Function Composition . 27
2.8.3 Implicit Partials . 27
2.8.4 Further Reading . 27

3 Coconut Documentation 29
3.1 Overview . 31
3.2 Compilation . 31

3.2.1 Installation . 31
3.2.2 Usage . 32
3.2.3 Naming Source Files . 33
3.2.4 Compilation Modes . 33
3.2.5 Compatible Python Versions . 33
3.2.6 Allowable Targets . 34
3.2.7 strict Mode . 35
3.2.8 IPython/ Jupyter Support . 35

3.3 Operators . 35
3.3.1 Lambdas . 35
3.3.2 Partial Application . 36
3.3.3 Pipeline . 37
3.3.4 Compose . 38
3.3.5 Chain . 38
3.3.6 Iterator Slicing . 39
3.3.7 Unicode Alternatives . 39

3.4 Keywords . 40
3.4.1 data . 40
3.4.2 match . 42
3.4.3 case . 46
3.4.4 Backslash-Escaping . 47
3.4.5 Reserved Variables . 47

3.5 Expressions . 47
3.5.1 Statement Lambdas . 47
3.5.2 Lazy Lists . 48
3.5.3 Implicit Partial Application . 48
3.5.4 Set Literals . 49
3.5.5 Imaginary Literals . 49
3.5.6 Underscore Separators . 50

3.6 Function Notation . 50
3.6.1 Tail Call Optimization . 50
3.6.2 Operator Functions . 51
3.6.3 Assignment Functions . 52
3.6.4 Infix Functions . 53
3.6.5 Pattern-Matching Functions . 54

3.7 Statements . 54
3.7.1 Destructuring Assignment . 54
3.7.2 Decorators . 55
3.7.3 else Statements . 56

ii

3.7.4 except Statements . 56
3.7.5 Implicit pass . 57
3.7.6 Parenthetical Continuation . 57
3.7.7 In-line global And nonlocal Assignment . 58
3.7.8 Code Passthrough . 58

3.8 Built-Ins . 59
3.8.1 addpattern . 59
3.8.2 prepattern . 59
3.8.3 reduce . 60
3.8.4 takewhile . 61
3.8.5 dropwhile . 61
3.8.6 tee . 62
3.8.7 consume . 63
3.8.8 count . 63
3.8.9 map and zip . 64
3.8.10 datamaker . 64
3.8.11 recursive_iterator . 65
3.8.12 parallel_map . 66
3.8.13 concurrent_map . 66
3.8.14 MatchError . 67

3.9 Coconut Utilities . 67
3.9.1 Syntax Highlighting . 67
3.9.2 coconut.__coconut__ . 68
3.9.3 coconut.convenience . 68

iii

iv

CHAPTER 1

Coconut Frequently Asked Questions

1. Can I use Python modules from Coconut and Coconut modules from Python?

2. What versions of Python does Coconut support?

3. Help! I tried to write a recursive iterator and my Python segfaulted!

4. If I’m already perfectly happy with Python, why should I learn Coconut?

5. How will I be able to debug my Python if I’m not the one writing it?

6. I don’t like functional programming, should I still learn Coconut?

7. I don’t know functional programming, should I still learn Coconut?

8. I don’t know Python very well, should I still learn Coconut?

9. Why isn’t Coconut purely functional?

10. Won’t a transpiled language like Coconut be bad for the Python community?

11. I want to contribute to Coconut, how do I get started?

12. Why the name Coconut?

13. Who developed Coconut?

1.1 Can I use Python modules from Coconut and Coconut modules
from Python?

Yes and yes! Coconut compiles to Python, so Coconut modules are accessible from Python and Python modules are
accessible from Coconut, including the entire Python standard library.

1.2 What versions of Python does Coconut support?

Coconut supports any Python version >= 2.6 on the 2.x branch or >= 3.2 on the 3.x branch. See compatible
Python versions for more information.

1

http://coconut.readthedocs.io/en/master/DOCS.html#compatible-python-versions
http://coconut.readthedocs.io/en/master/DOCS.html#compatible-python-versions

Coconut, Release v1.2.0 [Colonel]

1.3 Help! I tried to write a recursive iterator and my Python seg-
faulted!

No problem—just use Coconut’s recursive_iterator decorator and you should be fine. This is a known Python
issue but recursive_iterator will fix it for you.

1.4 If I’m already perfectly happy with Python, why should I learn Co-
conut?

You’re exactly the person Coconut was built for! Coconut lets you keep doing the thing you do well—write
Python—without having to worry about annoyances like version compatibility, while also allowing you to do new
cool things you might never have thought were possible before like pattern-matching and lazy evaluation. If you’ve
ever used a functional programming language before, you’ll know that functional code is often much simpler, cleaner,
and more readable (but not always, which is why Coconut isn’t purely functional). Python is a wonderful impera-
tive language, but when it comes to modern functional programming—which, in Python’s defense, it wasn’t designed
for—Python falls short, and Coconut corrects that shortfall.

1.5 How will I be able to debug my Python if I’m not the one writing
it?

Ease of debugging has long been a problem for all compiled languages, including languages like C and C++ that these
days we think of as very low-level languages. The solution to this problem has always been the same: line number
maps. If you know what line in the compiled code corresponds to what line in the source code, you can easily debug
just from the source code, without ever needing to deal with the compiled code at all. In Coconut, this can easily be
accomplished by passing the --line-numbers or -l flag, which will add a comment to every line in the compiled
code with the number of the corresponding line in the source code. Alternatively, --keep-lines or -k will put in
the verbatim source line instead of or in addition to the source line number. Then, if Python raises an error, you’ll be
able to see from the snippet of the compiled code that it shows you a comment telling you what line in your source
code you need to look at to debug the error.

1.6 I don’t like functional programming, should I still learn Coconut?

Definitely! While Coconut is great for functional programming, it also has a bunch of other awesome features as well,
including the ability to compile Python 3 code into universal Python code that will run the same on any version. And
that’s not even mentioning all of the features like pattern-matching and destructuring assignment with utility extending
far beyond just functional programming. That being said, I’d highly recommend you give functional programming a
shot, and since Coconut isn’t purely functional, it’s a great introduction to the functional style.

1.7 I don’t know functional programming, should I still learn Co-
conut?

Yes, absolutely! Coconut’s tutorial assumes absolutely no prior knowledge of functional programming, only Python.
Because Coconut is not a purely functional programming language, and all valid Python is valid Coconut, Coconut is
a great introduction to functional programming. If you learn Coconut, you’ll be able to try out a new functional style
of programming without having to abandon all the Python you already know and love.

2 Chapter 1. Coconut Frequently Asked Questions

http://coconut.readthedocs.io/en/master/DOCS.html#recursive_iterator
http://bugs.python.org/issue14010
http://bugs.python.org/issue14010
http://coconut.readthedocs.io/en/master/HELP.html

Coconut, Release v1.2.0 [Colonel]

1.8 I don’t know Python very well, should I still learn Coconut?

Maybe. If you know the very basics of Python, and are also very familiar with functional programming, then defi-
nitely—Coconut will let you continue to use all your favorite tools of functional programming while you make your
way through learning Python. If you’re not very familiar either with Python, or with functional programming, then
you may be better making your way through a Python tutorial before you try learning Coconut. That being said, using
Coconut to compile your pure Python code might still be very helpful for you, since it will alleviate having to worry
about version incompatibility.

1.9 Why isn’t Coconut purely functional?

The short answer is that Python isn’t purely functional, and all valid Python is valid Coconut. The long answer is that
Coconut isn’t purely functional for the same reason Python was never purely imperative—different problems demand
different approaches. Coconut is built to be useful, and that means not imposing constraints about what style the
programmer is allowed to use. That being said, Coconut is built specifically to work nicely when programming in a
functional style, which means if you want to write all your code purely functionally, Coconut will make it a smooth
experience, and allow you to have good-looking code to show for it.

1.10 Won’t a transpiled language like Coconut be bad for the Python
community?

I certainly hope not! Unlike most transpiled languages, all valid Python is valid Coconut. Coconut’s goal isn’t to
replace Python, but to extend it. If a newbie learns Coconut, it won’t mean they have a harder time learning Python,
it’ll mean they already know Python. And not just any Python, the newest and greatest—Python 3. And of course,
Coconut is perfectly interoperable with Python, and uses all the same libraries—thus, Coconut can’t split the Python
community, because the Coconut community is the Python community.

1.11 I want to contribute to Coconut, how do I get started?

That’s great! Coconut is completely open-source, and new contributors are always welcome. Contributing to Coconut
is as simple as forking Coconut on GitHub, making changes to the develop branch, and proposing a pull request.
If you have any questions at all about contributing, including understanding the source code, figuring out how to
implement a specific change, or just trying to figure out what needs to be done, try asking around at Coconut’s Gitter,
a GitHub-integrated chat room for Coconut developers.

1.12 Why the name Coconut?

If you don’t get the reference, the image above is from Monty Python and the Holy Grail, in which the Knights of the
Round Table bang Coconuts together to mimic the sound of riding a horse. The name was chosen to reference the fact
that Python is named after Monty Python as well.

1.13 Who developed Coconut?

Evan Hubinger is an undergraduate student studying mathematics and computer science at Harvey Mudd College. You
can find his resume online at http://evhub.github.io/resume.pdf.

1.8. I don’t know Python very well, should I still learn Coconut? 3

https://github.com/evhub/coconut
https://github.com/evhub/coconut/tree/develop
https://gitter.im/evhub/coconut
https://en.wikipedia.org/wiki/Monty_Python_and_the_Holy_Grail
https://www.python.org/doc/essays/foreword/
https://github.com/evhub
https://www.hmc.edu/
http://evhub.github.io/resume.pdf

Coconut, Release v1.2.0 [Colonel]

4 Chapter 1. Coconut Frequently Asked Questions

CHAPTER 2

Coconut Tutorial

1. Introduction

(a) Installation

2. Starting Out

(a) Using the Interpreter

(b) Using the Compiler

(c) Using IPython/ Jupyter

(d) Case Studies

3. Case Study 1: factorial

(a) Imperative Method

(b) Recursive Method

(c) Iterative Method

(d) addpattern Method

4. Case Study 2: quick_sort

(a) Sorting a Sequence

(b) Sorting an Iterator

5. Case Study 3: vector Part I

(a) 2-Vector

(b) n-Vector Constructor

(c) n-Vector Methods

6. Case Study 4: vector_field

(a) diagonal_line

(b) linearized_plane

(c) vector_field

(d) Applications

7. Case Study 5: vector Part II

(a) __truediv__

5

Coconut, Release v1.2.0 [Colonel]

(b) .unit

(c) .angle

8. Filling in the Gaps

(a) Lazy Lists

(b) Function Composition

(c) Implicit Partials

(d) Further Reading

2.1 Introduction

Welcome to the tutorial for the Coconut Programming Language! Coconut is a variant of Python built for simple,
elegant, Pythonic functional programming. But those are just words; what they mean in practice is that all valid
Python 3 is valid Coconut but Coconut builds on top of Python a suite of simple, elegant utilities for functional
programming.

Why use Coconut? Coconut is built to be fundamentally useful. Coconut enhances the repertoire of Python pro-
grammers to include the tools of modern functional programming, in such a way that those tools are easy to use and
immensely powerful; that is, Coconut does to functional programming what Python did to imperative programming.
And Coconut code runs the same on any Python version, making the Python 2/3 split a thing of the past.

Specifically, Coconut adds to Python built-in, syntactical support for:

• pattern-matching

• algebraic data types

• destructuring assignment

• partial application

• lazy lists

• function composition

• prettier lambdas

• infix notation

• pipeline-style programming

• operator functions

• tail recursion optimization

• parallel programming

and much more!

2.1.1 Installation

At its very core, Coconut is a compiler that turns Coconut code into Python code. That means that anywhere where
you can use a Python script, you can also use a compiled Coconut script. To access that core compiler, Coconut comes
with a command-line utility, which can

• compile single Coconut files or entire Coconut projects,

• interpret Coconut code on-the-fly, and

6 Chapter 2. Coconut Tutorial

http://evhub.github.io/coconut/
https://www.python.org/

Coconut, Release v1.2.0 [Colonel]

• hook into existing Python applications like IPython/ Jupyter.

Installing Coconut, including all the features above, is drop-dead simple. Just

1. install Python,

2. open a command-line prompt,

3. and enter:

pip install coconut

To check that your installation is functioning properly, try entering into the command line

coconut -h

which should display Coconut’s command-line help.

Note: If you’re having trouble installing Coconut, or if anything else mentioned in this tutorial doesn’t seem to work
for you, feel free to open an issue and it’ll be addressed as soon as possible.

2.2 Starting Out

2.2.1 Using the Interpreter

Now that you’ve got Coconut installed, the obvious first thing to do is to play around with it. To launch the Coconut
interpreter, just go to the command line and type

coconut

and you should see something like

Coconut Interpreter:
(type "exit()" or press Ctrl-D to end)
>>>

which is Coconut’s way of telling you you’re ready to start entering code for it to evaluate. So let’s do that!

In case you missed it earlier, all valid Python 3 is valid Coconut. That doesn’t mean compiled Coconut will only run
on Python 3—in fact, compiled Coconut will run the same on any Python version—but it does mean that only Python
3 code is guaranteed to compile as Coconut code.

That means that if you’re familiar with Python, you’re already familiar with a good deal of Coconut’s core syntax and
Coconut’s entire standard library. To show that, let’s try entering some basic Python into the Coconut interpreter.

>>> "hello, world!"
hello, world!
>>> 1 + 1
2

2.2.2 Using the Compiler

Of course, while being able to interpret Coconut code on-the-fly is a great thing, it wouldn’t be very useful without the
ability to write and compile larger programs. To that end, it’s time to write our first Coconut program: “hello, world!”
Coconut-style.

2.2. Starting Out 7

https://www.python.org/downloads/
https://github.com/evhub/coconut/issues/new

Coconut, Release v1.2.0 [Colonel]

First, we’re going to need to create a file to put our code into. The recommended file extension for Coconut source
files is .coco, so let’s create the new file hello_world.coco. After you do that, you should take the time now to
set up your text editor to properly highlight Coconut code. For instructions on how to do that, see the documentation
on Coconut syntax highlighting.

Now let’s put some code in our hello_world.coco file. Unlike in Python, where headers like

#!/usr/bin/env python
-*- coding: UTF-8 -*-
from __future__ import print_function, absolute_import, unicode_literals, division

are common and often very necessary, the Coconut compiler will automatically take care of all of that for you, so all
you need to worry about is your own code. To that end, let’s add the code for our “hello, world!” program.

In pure Python 3, “hello, world!” is

print("hello, world!")

and while that will work in Coconut, equally as valid is to use a pipeline-style approach, which is what we’ll do, and
write

"hello, world!" |> print

which should let you see very clearly how Coconut’s |> operator enables pipeline-style programming: it allows an
object to be passed along from function to function, with a different operation performed at each step. In this case,
we are piping the object "hello,world!" into the operation print. Now let’s save our simple “hello, world!”
program, and try to run it.

Compiling Coconut files and projects with the Coconut command-line utility is incredibly simple. Just type

coconut hello_world.coco

which should give the output

Coconut: Compiling hello_world.coco ...
Coconut: Compiled to hello_world.py .

and deposit a new hello_world.py file in the same directory as the hello_world.coco file. You should then
be able to run that file with

python hello_world.py

which should produce hello,world! as the output.

Compiling single files is not the only way to use the Coconut command-line utility, however. We can also compile all
the Coconut files in a given directory simply by passing that directory as the first argument, which will get rid of the
need to run the same Coconut header code in each file by storing it in a __coconut__.py file in the same directory.

The Coconut compiler supports a large variety of different compilation options, the help for which can always be
accessed by entering coconut -h into the command line. One of the most useful of these is --linenumbers (or
-l for short). Using --linenumbers will add the line numbers of your source code as comments in the compiled
code, allowing you to see what line in your source code corresponds to a line in the compiled code where an error is
occurring, for ease of debugging.

2.2.3 Using IPython/ Jupyter

Although all different types of programming can benefit from using more functional techniques, scientific computing,
perhaps more than any other field, lends itself very well to functional programming, an observation the case studies

8 Chapter 2. Coconut Tutorial

http://coconut.readthedocs.io/en/master/DOCS.html#syntax-highlighting

Coconut, Release v1.2.0 [Colonel]

in this tutorial are very good examples of. To that end, Coconut aims to provide extensive support for the established
tools of scientific computing in Python.

That means supporting IPython/ Jupyter, as modern Python programming, particularly in the sciences, has gravitated
towards the use of IPython (the python kernel for the Jupyter framework) instead of the classic Python shell. Coconut
supports being used both as a kernel for Jupyter notebooks and consoles, and as an extension inside of the IPython
kernel.

To launch a Jupyter notebook with Coconut as the kernel, use the command

coconut --jupyter notebook

and to launch a Jupyter console, use the command

coconut --jupyter console

or equivalently, --ipython can be substituted for --jupyter in either command.

To use Coconut as an extension inside of the IPython kernel, type the code

%load_ext coconut

into your IPython notebook or console, and then to run Coconut code, use

%coconut <code>

or

%%coconut <command-line-args>
<code>

2.2.4 Case Studies

Because Coconut is built to be fundamentally useful, the best way to demo it is to show it in action. To that end, the
majority of this tutorial will be showing how to apply Coconut to solve particular problems, which we’ll call case
studies.

These case studies are not intended to provide a complete picture of all of Coconut’s features. For that, see Coconut’s
comprehensive documentation. Instead, they are intended to show how Coconut can actually be used to solve practical
programming problems.

2.3 Case Study 1: factorial

In the first case study we will be defining a factorial function, that is, a function that computes n! where n is an
integer >= 0. This is somewhat of a toy example, since Python can fairly easily do this, but it will serve as a good
showcase of some of the basic features of Coconut and how they can be used to great effect.

To start off with, we’re going to have to decide what sort of an implementation of factorial we want. There are
many different ways to tackle this problem, but for the sake of concision we’ll split them into four major categories:
imperative, recursive, iterative, and addpattern.

2.3. Case Study 1: factorial 9

http://ipython.org/
http://jupyter.org/
http://coconut.readthedocs.io/en/master/DOCS.html

Coconut, Release v1.2.0 [Colonel]

2.3.1 Imperative Method

The imperative approach is the way you’d write factorial in a language like C. Imperative approaches involve
lots of state change, where variables are regularly modified and loops are liberally used. In Coconut, the imperative
approach to the factorial problem looks like this:

def factorial(n):
"""Compute n! where n is an integer >= 0."""
if n `isinstance` int and n >= 0:

acc = 1
for x in range(1, n+1):

acc *= x
return acc

else:
raise TypeError("the argument to factorial must be an integer >= 0")

Test cases:
-1 |> factorial |> print # TypeError
0.5 |> factorial |> print # TypeError
0 |> factorial |> print # 1
3 |> factorial |> print # 6

Before we delve into what exactly is happening here, let’s give it a run and make sure the test cases check out. If
we were really writing a Coconut program, we’d want to save and compile an actual file, but since we’re just playing
around, let’s try copy-pasting into the interpreter. Here, you should get 1, 6, and then two TypeErrors.

Now that we’ve verified it works, let’s take a look at what’s going on. Since the imperative approach is a funda-
mentally non-functional method, Coconut can’t help us improve this example very much. Even here, though, the
use of Coconut’s infix notation (where the function is put in-between its arguments, surrounded in backticks) in n
`isinstance` int makes the code slightly cleaner and easier to read.

2.3.2 Recursive Method

The recursive approach is the first of the fundamentally functional approaches, in that it doesn’t involve the state
change and loops of the imperative approach. Recursive approaches avoid the need to change variables by making that
variable change implicit in the recursive function call. Here’s the recursive approach to the factorial problem in
Coconut:

def factorial(n):
"""Compute n! where n is an integer >= 0."""
case n:

match 0:
return 1

match _ is int if n > 0:
return n * factorial(n-1)

else:
raise TypeError("the argument to factorial must be an integer >= 0")

Test cases:
-1 |> factorial |> print # TypeError
0.5 |> factorial |> print # TypeError
0 |> factorial |> print # 1
3 |> factorial |> print # 6

Copy and paste the code and tests into the interpreter. You should get the same test results as you got for the imperative
version—but you can probably tell there’s quite a lot more going on here than there. That’s intentional: Coconut is

10 Chapter 2. Coconut Tutorial

Coconut, Release v1.2.0 [Colonel]

intended for functional programming, not imperative programming, and so its new features are built to be most useful
when programming in a functional style.

Let’s take a look at the specifics of the syntax in this example. The first thing we see is case n. This statement starts
a case block, in which only match statements can occur. Each match statement will attempt to match its given
pattern against the value in the case block. Only the first successful match inside of any given case block will be
executed. When a match is successful, any variable bindings in that match will also be performed. Additionally, as
is true in this case, match statements can also have if guards that will check the given condition before the match
is considered final. Finally, after the case block, an else statement is allowed, which will only be executed if no
match statement is.

Specifically, in this example, the first match statement checks whether n matches to 0. If it does, it executes
return 1. Then the second match statement checks whether n matches to _ is int, which performs an
isinstance check on n against int, then checks whether n > 0, and if those are true, executes return n

* factorial(n-1). If neither of those two statements are executed, the else statement triggers and executes
raise TypeError("the argument to factorial must be an integer >= 0").

Although this example is very basic, pattern-matching is both one of Coconut’s most powerful and most complicated
features. As a general intuitive guide, it is helpful to think assignment whenever you see the keyword match. A
good way to showcase this is that all match statements can be converted into equivalent destructuring assignment
statements, which are also valid Coconut. In this case, the destructuring assignment equivalent to the factorial
function above would be:

def factorial(n):
"""Compute n! where n is an integer >= 0."""
try:

0 = n # destructuring assignment
except MatchError:

try:
_ is int = n # also destructuring assignment

except MatchError:
pass

else: if n > 0: # in Coconut, if, match, and try are allowed after else
return n * factorial(n-1)

else:
return 1

raise TypeError("the argument to factorial must be an integer >= 0")

Test cases:
-1 |> factorial |> print # TypeError
0.5 |> factorial |> print # TypeError
0 |> factorial |> print # 1
3 |> factorial |> print # 6

First, copy and paste! While this destructuring assignment equivalent should work, it is much more cumbersome than
match statements when you expect that they’ll fail, which is why match statement syntax exists. But the destruc-
turing assignment equivalent illuminates what exactly the pattern-matching is doing, by making it clear that match
statements are really just fancy destructuring assignment statements, which are really just fancy normal assignment
statements. In fact, to be explicit about using destructuring assignment instead of normal assignment, the match
keyword can be put before a destructuring assignment statement to signify it as such.

It will be helpful to, as we continue to use Coconut’s pattern-matching and destructuring assignment statements in
further examples, think assignment whenever you see the keyword match.

Up until now, for the recursive method, we have only dealt with pattern-matching, but there’s actually another way that
Coconut allows us to improve our factorial function. Coconut performs automatic tail call optimization, which
means that whenever a function directly returns a call to another function, Coconut will optimize away the additional
call. Thus, we can improve our factorial function by rewriting it to use a tail call:

2.3. Case Study 1: factorial 11

Coconut, Release v1.2.0 [Colonel]

def factorial(n, acc=1):
"""Compute n! where n is an integer >= 0."""
case n:

match 0:
return acc

match _ is int if n > 0:
return factorial(n-1, acc*n)

else:
raise TypeError("the argument to factorial must be an integer >= 0")

Test cases:
-1 |> factorial |> print # TypeError
0.5 |> factorial |> print # TypeError
0 |> factorial |> print # 1
3 |> factorial |> print # 6

Copy, paste! This new factorial function is equivalent to the original version, with the exception that it will never
raise a RuntimeError due to reaching Python’s maximum recursion depth, since Coconut will optimize away the
recursive tail call.

2.3.3 Iterative Method

The final, and other functional, approach, is the iterative one. Iterative approaches avoid the need for state change and
loops by using higher-order functions, those that take other functions as their arguments, like map and reduce, to
abstract out the basic operations being performed. In Coconut, the iterative approach to the factorial problem is:

def factorial(n):
"""Compute n! where n is an integer >= 0."""
case n:

match 0:
return 1

match _ is int if n > 0:
return range(1, n+1) |> reduce$(*)

else:
raise TypeError("the argument to factorial must be an integer >= 0")

Test cases:
-1 |> factorial |> print # TypeError
0.5 |> factorial |> print # TypeError
0 |> factorial |> print # 1
3 |> factorial |> print # 6

Copy, paste! This definition differs from the recursive definition only by one line. That’s intentional: because both the
iterative and recursive approaches are functional approaches, Coconut can provide a great assist in making the code
cleaner and more readable. The one line that differs is this one:

return range(1, n+1) |> reduce$(*)

Let’s break down what’s happening on this line. First, the range function constructs an iterator of all the numbers
that need to be multiplied together. Then, it is piped into the function reduce$(*), which does that multiplication.
But how? What is reduce$(*).

We’ll start with the base, the reduce function. reduce used to exist as a built-in in Python 2, and Coconut brings
it back. reduce is a higher-order function that takes a function on two arguments as its first argument, and an
iterator as its second argument, and applies that function to the given iterator by starting with the first element, and

12 Chapter 2. Coconut Tutorial

Coconut, Release v1.2.0 [Colonel]

calling the function on the accumulated call so far and the next element, until the iterator is exhausted. Here’s a visual
representation:

reduce(f, (a, b, c, d))

acc iter
(a, b, c, d)

a (b, c, d)
f(a, b) (c, d)
f(f(a, b), c) (d)
f(f(f(a, b), c), d)

return acc

Now let’s take a look at what we do to reduce to make it multiply all the numbers we feed into it together. The
Coconut code that we saw for that was reduce$(*). There are two different Coconut constructs being used here:
the operator function for multiplication in the form of (*), and partial application in the form of $.

First, the operator function. In Coconut, a function form of any operator can be retrieved by surrounding that operator
in parentheses. In this case, (*) is roughly equivalent to lambda x,y: x*y, but much cleaner and neater. In
Coconut’s lambda syntax, (*) is also equivalent to (x,y) -> x*y, which we will use from now on for all lambdas,
even though both are legal Coconut, because Python’s lambda statement is too ugly and bulky to use regularly. In
fact, if Coconut’s --strict mode is enabled, which will force your code to obey certain cleanliness standards, it
will raise an error whenever Python lambda statements are used.

Second, the partial application. Think of partial application as lazy function calling, and $ as the lazy-ify opera-
tor, where lazy just means “don’t evaluate this until you need to”. In Coconut, if a function call is prefixed by a
$, like in this example, instead of actually performing the function call, a new function is returned with the given
arguments already provided to it, so that when it is then called, it will be called with both the partially-applied argu-
ments and the new arguments, in that order. In this case, reduce$(*) is equivalent to (*args,**kwargs) ->
reduce((*),*args,**kwargs).

Putting it all together, we can see how the single line of code

range(1, n+1) |> reduce$(*)

is able to compute the proper factorial, without using any state or loops, only higher-order functions, in true functional
style. By supplying the tools we use here like partial application ($), pipeline-style programming (|>), higher-order
functions (reduce), and operator functions ((*)), Coconut enables this sort of functional programming to be done
cleanly, neatly, and easily.

2.3.4 addpattern Method

While the iterative approach is very clean, there are still some bulky pieces—looking at the iterative version below,
you can see that it takes three entire indentation levels to get from the function definition to the actual objects being
returned:

def factorial(n):
"""Compute n! where n is an integer >= 0."""
case n:

match 0:
return 1

match _ is int if n > 0:
return range(1, n+1) |> reduce$(*)

else:
raise TypeError("the argument to factorial must be an integer >= 0")

2.3. Case Study 1: factorial 13

Coconut, Release v1.2.0 [Colonel]

By making use of the built-in Coconut function addpattern, we can take that from three indentation levels down
to one. Take a look:

def factorial(0):
return 1

@addpattern(factorial)
def factorial(n is int if n > 0):

"""Compute n! where n is an integer >= 0."""
return range(1, n+1) |> reduce$(*)

Test cases:
-1 |> factorial |> print # MatchError
0.5 |> factorial |> print # MatchError
0 |> factorial |> print # 1
3 |> factorial |> print # 6

Copy, paste! This should work exactly like before, except now it raises MatchError as a fall through instead of
TypeError. There are two major new concepts to talk about here: addpattern, of course, and pattern-matching
function definition—how both of the functions above are defined.

First, pattern-matching function definition. Pattern-matching function definition does exactly that—pattern-matches
against all the arguments that are passed to the function. There are a couple of things to watch out for when using
pattern-matching function definition, however. First, that if the pattern doesn’t match (if for example the wrong
number of arguments are passed), your function will raise a MatchError, and second, that keyword arguments
aren’t allowed. Finally, like destructuring assignment, if you want to be more explicit about using pattern-matching
function definition, you can add a match before the def.

Second, addpattern. addpattern takes one argument, a previously-defined pattern-matching function, and
returns a decorator that decorates a new pattern-matching function by adding the new pattern as an additional case to
the old patterns. Thus, addpattern can be thought of as doing exactly what it says—it adds a new pattern to an
existing pattern-matching function.

Finally, not only can we rewrite the imperative approach using addpattern, as we did above, we can also rewrite
the recursive approach using addpattern, like so:

def factorial(0) = 1

@addpattern(factorial)
def factorial(n is int if n > 0):

"""Compute n! where n is an integer >= 0."""
return n * factorial(n - 1)

Test cases:
-1 |> factorial |> print # MatchError
0.5 |> factorial |> print # MatchError
0 |> factorial |> print # 1
3 |> factorial |> print # 6

Copy, paste! It should work exactly like before, except, as above, with TypeError replaced by MatchError.

2.4 Case Study 2: quick_sort

In the second case study, we will be implementing the quick sort algorithm. We will implement two versions: first,
a quick_sort function that takes in a list and outputs a list, and second, a quick_sort function that takes in an
iterator and outputs an iterator.

14 Chapter 2. Coconut Tutorial

https://en.wikipedia.org/wiki/Quicksort

Coconut, Release v1.2.0 [Colonel]

2.4.1 Sorting a Sequence

First up is quick_sort for lists. We’re going to use a recursive addpattern-based approach to tackle this
problem—a similar approach to the very last factorial function we wrote. That’s because since we’re not going
to write quick_sort in a tail-recursive style, we can’t use tail_recursive, and thus there’s no reason to write
the whole thing as one function and we might as well use addpattern to reduce the amount of indentation we’re
going to need. Without further ado, here’s our implementation of quick_sort for lists:

def quick_sort([]):
return []

@addpattern(quick_sort)
def quick_sort([head] + tail):

"""Sort the input sequence using the quick sort algorithm."""
return (quick_sort([x for x in tail if x < head])

+ [head]
+ quick_sort([x for x in tail if x >= head]))

Test cases:
[] |> quick_sort |> print # []
[3] |> quick_sort |> print # [3]
[0,1,2,3,4] |> quick_sort |> print # [0,1,2,3,4]
[4,3,2,1,0] |> quick_sort |> print # [0,1,2,3,4]
[3,0,4,2,1] |> quick_sort |> print # [0,1,2,3,4]

Copy, paste! Only one new feature here: head-tail pattern-matching. Here, we see the head-tail pattern [head] +
tail, which more generally just follow the form of a list or tuple added to a variable. When this appears in any
pattern-matching context, the value being matched against will be treated as a sequence, the list or tuple matched
against the beginning of that sequence, and the rest of it bound to the variable. In this case, we use the head-tail pattern
to remove the head so we can use it as the pivot for splitting the rest of the list.

2.4.2 Sorting an Iterator

Now it’s time to try quick_sort for iterators. Our method for tackling this problem is going to be a combination of
the recursive and iterative approaches we used for the factorial problem, in that we’re going to be lazily building
up an iterator, and we’re going to be doing it recursively. Here’s the code:

def quick_sort(l):
"""Sort the input iterator, using the quick sort algorithm, and without using any

→˓data until necessary."""
match [head] :: tail in l:

tail, tail_ = tee(tail)
yield from (quick_sort((x for x in tail if x < head))

:: (head,)
:: quick_sort((x for x in tail_ if x >= head))
)

Test cases:
[] |> quick_sort |> list |> print # []
[3] |> quick_sort |> list |> print # [3]
[0,1,2,3,4] |> quick_sort |> list |> print # [0,1,2,3,4]
[4,3,2,1,0] |> quick_sort |> list |> print # [0,1,2,3,4]
[3,0,4,2,1] |> quick_sort |> list |> print # [0,1,2,3,4]

Copy, paste! This quick_sort algorithm works uses a bunch of new constructs, so let’s go over them.

2.4. Case Study 2: quick_sort 15

Coconut, Release v1.2.0 [Colonel]

First, the :: operator, which appears here both in pattern-matching and by itself. In essence, the :: operator is lazy
+ for iterators. On its own, it takes two iterators and concatenates, or chains, them together, and it does this lazily, not
evaluating anything until its needed, so it can be used for making infinite iterators. In pattern-matching, it inverts that
operation, destructuring the beginning of an iterator into a pattern, and binding the rest of that iterator to a variable.

Which brings us to the second new thing, match ... in ... notation. The notation

match pattern in item:
<body>

else:
<else>

is shorthand for

case item:
match pattern:

<body>
else:

<else>

that avoids the need for an additional level of indentation when only one match is being performed.

The third new construct is the built-in function tee. tee solves a problem for functional programming created by
the implementation of Python’s iterators: whenever an element of an iterator is accessed, it’s lost. tee solves this
problem by splitting an iterator in two (or more if the optional argument n is passed) independent iterators that both
use the same underlying iterator to access their data, thus when an element of one is accessed, it isn’t lost in the other.

Finally, although it’s not a new construct, since it exists in Python 3, the use of yield from here deserves a mention.
In Python, yield is the statement used to construct iterators, functioning much like return, with the exception that
multiple yields can be encountered, and each one will produce another element. yield from is very similar,
except instead of adding a single element to the produced iterator, it adds another whole iterator.

Putting it all together, here’s our quick_sort function again:

def quick_sort(l):
"""Sort the input iterator, using the quick sort algorithm, and without using any

→˓data until necessary."""
match [head] :: tail in l:

tail, tail_ = tee(tail)
yield from (quick_sort((x for x in tail if x < head))

:: (head,)
:: quick_sort((x for x in tail_ if x >= head))
)

The function first attempts to split l into an initial element and a remaining iterator. If l is the empty iterator, that
match will fail, and it will fall through, yielding the empty iterator. Otherwise, we make a copy of the rest of the
iterator, and yield the join of (the quick sort of all the remaining elements less than the initial element), (the initial
element), and (the quick sort of all the remaining elements greater than the initial element).

The advantages of the basic approach used here, heavy use of iterators and recursion, as opposed to the classical
imperative approach, are numerous. First, our approach is more clear and more readable, since it is describing what
quick_sort is instead of how quick_sort could be implemented. Second, our approach is lazy in that our
quick_sort won’t evaluate any data until it needs it. Finally, and although this isn’t relevant for quick_sort it
is relevant in many other cases, an example of which we’ll see later in this tutorial, our approach allows for working
with infinite series just like they were finite.

And Coconut makes programming in such an advantageous functional approach significantly easier. In this example,
Coconut’s pattern-matching lets us easily split the given iterator, and Coconut’s :: iterator joining operator lets us
easily put it back together again in sorted order.

16 Chapter 2. Coconut Tutorial

Coconut, Release v1.2.0 [Colonel]

2.5 Case Study 3: vector Part I

In the next case study, we’ll be doing something slightly different—instead of defining a function, we’ll be creating
an object. Specifically, we’re going to try to implement an immutable n-vector that supports all the basic vector
operations.

In functional programming, it is often very desirable to define immutable objects, those that can’t be changed once
created—like Python’s strings or tuples. Like strings and tuples, immutable objects are useful for a wide variety of
reasons:

• they’re easier to reason about, since you can be guaranteed they won’t change,

• they’re hashable and pickleable, so they can be used as keys and serialized,

• they’re significantly more efficient since they require much less overhead,

• and when combined with pattern-matching, they can be used as what are called algebraic data types to build up
and then match against large, complicated data structures very easily.

2.5.1 2-Vector

Coconut’s data statement brings the power and utility of immutable, algebraic data types to Python, and it is this
that we will be using to construct our vector type. The demonstrate the syntax of data statements, we’ll start
by defining a simple 2-vector. Our vector will have one special method __abs__ which will compute the vector’s
magnitude, defined as the square root of the sum of the squares of the elements. Here’s our 2-vector:

data vector2(x, y):
"""Immutable 2-vector."""
def __abs__(self):

"""Return the magnitude of the 2-vector."""
return (self.x**2 + self.y**2)**0.5

Test cases:
vector2(1, 2) |> print # vector2(x=1, y=2)
vector2(3, 4) |> abs |> print # 5
v = vector2(2, 3)
v.x = 7 # AttributeError

Copy, paste! This example shows the basic syntax of data statements:

data <name>(<attributes>):
<body>

where <name> and <body> are the same as the equivalent class definition, but <attributes> are the different
attributes of the data type, in order that the constructor should take them as arguments. In this case, vector2 is a
data type of two attributes, x and y, with one defined method, __abs__, that computes the magnitude. As the test
cases show, we can then create, print, but not modify instances of vector2.

2.5.2 n-Vector Constructor

Now that we’ve got the 2-vector under our belt, let’s move to back to our original, more complicated problem: n-
vectors, that is, vectors of arbitrary length. We’re going to try to make our n-vector support all the basic vector
operations, but we’ll start out with just the data definition and the constructor:

2.5. Case Study 3: vector Part I 17

Coconut, Release v1.2.0 [Colonel]

data vector(pts):
"""Immutable n-vector."""
def __new__(cls, *pts):

"""Create a new vector from the given pts."""
if len(pts) == 1 and pts[0] `isinstance` vector:

return pts[0] # vector(v) where v is a vector should return v
else:

return pts |> tuple |> datamaker(cls) # accesses base constructor

Test cases:
vector(1, 2, 3) |> print # vector(pts=(1, 2, 3))
vector(4, 5) |> vector |> print # vector(pts=(4, 5))

Copy, paste! The big new thing here is how to write data constructors. Since data types are immutable, __init__
construction won’t work. Instead, a different special method __new__ is used, which must return the newly con-
structed instance, and unlike most methods, takes the class not the object as the first argument. Since __new__ needs
to return a fully constructed instance, in almost all cases access to the underlying data constructor will be necessary.
To achieve this, Coconut provides the built-in function datamaker, which takes a data type, often the first argument
to __new__, and returns its underlying data constructor.

In this case, the constructor checks whether nothing but another vector was passed, in which case it returns that,
otherwise it returns the result of creating a tuple of the arguments and passing that to the underlying constructor, the
form of which is vector(pts), thus assigning the tuple to the pts attribute.

2.5.3 n-Vector Methods

Now that we have a constructor for our n-vector, it’s time to write its methods. First up is __abs__, which should
compute the vector’s magnitude. This will be slightly more complicated than with the 2-vector, since we have to make
it work over an arbitrary number of pts. Fortunately, we can use Coconut’s pipeline-style programming and partial
application to make it simple:

def __abs__(self):
"""Return the magnitude of the vector."""
return self.pts |> map$((x) -> x**2) |> sum |> ((s) -> s**0.5)

The basic algorithm here is map square over each element, sum them all, then square root the result, an algorithm
which is so clean to implement in Coconut that it can be read right off the code.

Next up is vector addition. The goal here is to add two vectors of equal length by adding their components. To do this,
we’re going to make use of Coconut’s ability to perform pattern-matching, or in this case destructuring assignment, to
data types, like so:

def __add__(self, other):
"""Add two vectors together."""
vector(other_pts) = other
assert len(other_pts) == len(self.pts)
return map((+), self.pts, other_pts) |*> vector

There are a couple of new constructs here, but the main notable one is the destructuring assignment statement
vector(other_pts) = other which showcases the syntax for pattern-matching against data types: it mim-
ics exactly the original data declaration of that data type. In this case, vector(other_pts) = other will
only match a vector, raising a MatchError otherwise, and if it does match a vector, will assign the vector’s pts
attribute to the variable other_pts.

The other new construct used here is the |*>, or star-pipe, operator, which functions exactly like the normal pipe,
except that instead of calling the function with one argument, it calls it with as many arguments as there are elements

18 Chapter 2. Coconut Tutorial

Coconut, Release v1.2.0 [Colonel]

in the sequence passed into it. The difference between |*> and |> is exactly analogous to the difference between
f(args) and f(*args).

Next is vector subtraction, which is just like vector addition, but with (-) instead of (+):

def __sub__(self, other):
"""Subtract one vector from another."""
vector(other_pts) = other
assert len(other_pts) == len(self.pts)
return map((-), self.pts, other_pts) |*> vector

One thing to note here is that unlike the other operator functions, (-) can either mean negation or subtraction, the
meaning of which will be inferred based on how many arguments are passed, 1 for negation, 2 for subtraction. To
show this, we’ll use the same (-) function to implement vector negation, which should simply negate each element:

def __neg__(self):
"""Retrieve the negative of the vector."""
return self.pts |> map$((-)) |*> vector

Our next method will be equality. We’re again going to use data pattern-matching to implement this, but this time
inside of a match statement instead of with destructuring assignment, since we want to return False not raise
an error if the match fails. Here’s the code:

def __eq__(self, other):
"""Compare whether two vectors are equal."""
match vector(=self.pts) in other:

return True
else:

return False

The only new construct here is the use of =self.pts in the match statement. This construct is used to perform a
check inside of the pattern-matching, making sure the match only succeeds if other.pts == self.pts.

The last method we’ll implement is multiplication. This one is a little bit tricky, since mathematically, there are
a whole bunch of different ways to multiply vectors. For our purposes, we’re just going to look at two: between
two vectors of equal length, we want to compute the dot product, defined as the sum of the corresponding elements
multiplied together, and between a vector and a scalar, we want to compute the scalar multiple, which is just each
element multiplied by that scalar. Here’s our implementation:

def __mul__(self, other):
"""Scalar multiplication and dot product."""
match vector(other_pts) in other:

assert len(other_pts) == len(self.pts)
return map((*), self.pts, other_pts) |> sum # dot product

else:
return self.pts |> map$((*)$(other)) |*> vector # scalar multiple

def __rmul__(self, other):
"""Necessary to make scalar multiplication commutative."""
return self * other

The first thing to note here is that unlike with addition and subtraction, where we wanted to raise an error if the vector
match failed, here, we want to do scalar multiplication if the match fails, so instead of using destructuring assignment,
we use a match statement. The second thing to note here is the combination of pipeline-style programming, partial
application, operator functions, and higher-order functions we’re using to compute the dot product and scalar multiple.
For the dot product, we map multiplication over the two vectors, then sum the result. For the scalar multiple, we take
the original points, map multiplication by the scalar over them, then use them to make a new vector.

Finally, putting everything together:

2.5. Case Study 3: vector Part I 19

Coconut, Release v1.2.0 [Colonel]

data vector(pts):
"""Immutable n-vector."""
def __new__(cls, *pts):

"""Create a new vector from the given pts."""
if len(pts) == 1 and pts[0] `isinstance` vector:

return pts[0] # vector(v) where v is a vector should return v
else:

return pts |> tuple |> datamaker(cls) # accesses base constructor
def __abs__(self):

"""Return the magnitude of the vector."""
return self.pts |> map$((x) -> x**2) |> sum |> ((s) -> s**0.5)

def __add__(self, other):
"""Add two vectors together."""
vector(other_pts) = other
assert len(other_pts) == len(self.pts)
return map((+), self.pts, other_pts) |*> vector

def __sub__(self, other):
"""Subtract one vector from another."""
vector(other_pts) = other
assert len(other_pts) == len(self.pts)
return map((-), self.pts, other_pts) |*> vector

def __neg__(self):
"""Retrieve the negative of the vector."""
return self.pts |> map$((-)) |*> vector

def __eq__(self, other):
"""Compare whether two vectors are equal."""
match vector(=self.pts) in other:

return True
else:

return False
def __mul__(self, other):

"""Scalar multiplication and dot product."""
match vector(other_pts) in other:

assert len(other_pts) == len(self.pts)
return map((*), self.pts, other_pts) |> sum # dot product

else:
return self.pts |> map$((*)$(other)) |*> vector # scalar multiplication

def __rmul__(self, other):
"""Necessary to make scalar multiplication commutative."""
return self * other

Test cases:
vector(1, 2, 3) |> print # vector(pts=(1, 2, 3))
vector(4, 5) |> vector |> print # vector(pts=(4, 5))
vector(3, 4) |> abs |> print # 5
vector(1, 2) + vector(2, 3) |> print # vector(pts=(3, 5))
vector(2, 2) - vector(0, 1) |> print # vector(pts=(2, 1))
-vector(1, 3) |> print # vector(pts=(-1, -3))
(vector(1, 2) == "string") |> print # False
(vector(1, 2) == vector(3, 4)) |> print # False
(vector(2, 4) == vector(2, 4)) |> print # True
2*vector(1, 2) |> print # vector(pts=(2, 4))
vector(1, 2) * vector(1, 3) |> print # 7

Copy, paste! Now that was a lot of code. But looking it over, it looks clean, readable, and concise, and it does
precisely what we intended it to do: create an algebraic data type for an immutable n-vector that supports the basic
vector operations. And we did the whole thing without needing any imperative constructs like state or loops—pure
functional programming.

20 Chapter 2. Coconut Tutorial

Coconut, Release v1.2.0 [Colonel]

2.6 Case Study 4: vector_field

For the final case study, instead of me writing the code, and you looking at it, you’ll be writing the code—of course, I
won’t be looking at it, but I will show you how I would have done it after you give it a shot by yourself.

The bonus challenge for this section is to write each of the functions we’ll be defining in just one line. To help with
that, we’re going to introduce a new concept up front, assignment functions. An assignment function looks like this

def <name>(<args>) = <return value>

which has the advantage over the classic Python

def <name>(<args>): return <return value>

of being shorter, more readable, and not requiring return to be typed out. If you try to go for the one-liner approach,
using assignment functions will help keep your lines short and your code readable.

With that out of the way, it’s time to introduce the general goal of this case study. We want to write a program that
will allow us to produce infinite vector fields that we can iterate over and apply operations to. And in our case, we’ll
say we only care about vectors with positive components.

Our first step, therefore, is going to be creating a field of all the points with positive x and y values—that is, the first
quadrant of the x-y plane, which looks something like this:

...

(0,2) ...

(0,1) (1,1) ...

(0,0) (1,0) (2,0) ...

But since we want to be able to iterate over that plane, we’re going to need to linearize it somehow, and the easiest
way to do that is to split it up into diagonals, and traverse the first diagonal, then the second diagonal, and so on, like
this:

...

(0,2)< ...
_

(0,1)< (1,1)< ...
_ _

(0,0) > (1,0) > (2,0) > ...

2.6.1 diagonal_line

Thus, our first function diagonal_line(n) should construct an iterator of all the points, represented as coordinate
tuples, in the nth diagonal, starting with (0,0) as the 0th diagonal. Like we said at the start of this case study, this
is where we I let go and you take over. Using all the tools of functional programming that Coconut provides, give
diagonal_line a shot. When you’re ready to move on, scroll down.

Here are some tests that you can use:

diagonal_line(0) `isinstance` (list, tuple) |> print # False (should be an iterator)
diagonal_line(0) |> list |> print # [(0, 0)]
diagonal_line(1) |> list |> print # [(0, 1), (1, 0)]

2.6. Case Study 4: vector_field 21

Coconut, Release v1.2.0 [Colonel]

Hint: the nth diagonal should contain n+1 elements, so try starting with range(n+1) and then transforming it in
some way.

That wasn’t so bad, now was it? Now, let’s take a look at my solution:

def diagonal_line(n) = range(n+1) |> map$((i) -> (i, n-i))

Pretty simple, huh? We take range(n+1), and use map to transform it into the right sequence of tuples.

2.6.2 linearized_plane

Now that we’ve created our diagonal lines, we need to join them together to make the full linearized plane, and to do
that we’re going to write the function linearized_plane(). linearized_plane should produce an iterator
that goes through all the points in the plane, in order of all the points in the first diagonal(0), then the second
diagonal(1), and so on. linearized_plane is going to be, by necessity, an infinite iterator, since it needs
to loop through all the points in the plane, which have no end. To help you accomplish this, remember that the ::
operator is lazy, and won’t evaluate its operands until they’re needed, which means it can be used to construct infinite
iterators. When you’re ready to move on, scroll down.

Tests:

Note: these tests use $[] notation, which we haven't introduced yet
but will introduce later in this case study; for now, just run the
tests, and make sure you get the same result as is in the comment
linearized_plane()$[0] |> print # (0, 0)
linearized_plane()$[:3] |> list |> print # [(0, 0), (0, 1), (1, 0)]

Hint: instead of defining the function as linearized_plane(), try defining it as linearized_plane(n=0),
where n is the diagonal to start at, and use recursion to build up from there.

That was a little bit rougher than the first one, but hopefully still not too bad. Let’s compare to my solution:

def linearized_plane(n=0) = diagonal_line(n) :: linearized_plane(n+1)

As you can see, it’s a very fundamentally simple solution: just use :: and recursion to join all the diagonals together
in order.

2.6.3 vector_field

Now that we have a function that builds up all the points we need, it’s time to turn them into vectors, and to do that
we’ll define the new function vector_field(), which should turn all the tuples in linearized_plane into
vectors, using the n-vector class we defined earlier.

Tests:

You'll need to bring in the vector class from earlier to make these work
vector_field()$[0] |> print # vector(pts=(0, 0))
vector_field()$[2:3] |> list |> print # [vector(pts=(1, 0))]

Hint: Remember, the way we defined vector it takes the components as separate arguments, not a single tuple.

We’re making good progress! Before we move on, check your solution against mine:

def vector_field() = linearized_plane() |> map$((xy) -> vector(*xy))

All we’re doing is taking our linearized_plane and mapping vector over it, but making sure to call vector
with each element of the tuple as a separate argument.

22 Chapter 2. Coconut Tutorial

Coconut, Release v1.2.0 [Colonel]

2.6.4 Applications

Now that we’ve built all the functions we need for our vector field, it’s time to put it all together and test it. Feel free
to substitute in your versions of the functions below:

data vector(pts):
"""Immutable n-vector."""
def __new__(cls, *pts):

"""Create a new vector from the given pts."""
if len(pts) == 1 and pts[0] `isinstance` vector:

return pts[0] # vector(v) where v is a vector should return v
else:

return pts |> tuple |> datamaker(cls) # accesses base constructor
def __abs__(self):

"""Return the magnitude of the vector."""
return self.pts |> map$((x) -> x**2) |> sum |> ((s) -> s**0.5)

def __add__(self, other):
"""Add two vectors together."""
vector(other_pts) = other
assert len(other_pts) == len(self.pts)
return map((+), self.pts, other_pts) |*> vector

def __sub__(self, other):
"""Subtract one vector from another."""
vector(other_pts) = other
assert len(other_pts) == len(self.pts)
return map((-), self.pts, other_pts) |*> vector

def __neg__(self):
"""Retrieve the negative of the vector."""
return self.pts |> map$((-)) |*> vector

def __eq__(self, other):
"""Compare whether two vectors are equal."""
match vector(=self.pts) in other:

return True
else:

return False
def __mul__(self, other):

"""Scalar multiplication and dot product."""
match vector(other_pts) in other:

assert len(other_pts) == len(self.pts)
return map((*), self.pts, other_pts) |> sum # dot product

else:
return self.pts |> map$((*)$(other)) |*> vector # scalar multiplication

def __rmul__(self, other):
"""Necessary to make scalar multiplication commutative."""
return self * other

def diagonal_line(n) = range(n+1) |> map$((i) -> (i, n-i))
def linearized_plane(n=0) = diagonal_line(n) :: linearized_plane(n+1)
def vector_field() = linearized_plane() |> map$((xy) -> vector(*xy))

Test cases:
diagonal_line(0) `isinstance` (list, tuple) |> print # False (should be an iterator)
diagonal_line(0) |> list |> print # [(0, 0)]
diagonal_line(1) |> list |> print # [(0, 1), (1, 0)]
linearized_plane()$[0] |> print # (0, 0)
linearized_plane()$[:3] |> list |> print # [(0, 0), (0, 1), (1, 0)]
vector_field()$[0] |> print # vector(pts=(0, 0))
vector_field()$[2:3] |> list |> print # [vector(pts=(1, 0))]

2.6. Case Study 4: vector_field 23

Coconut, Release v1.2.0 [Colonel]

Copy, paste! Once you’ve made sure everything is working correctly if you substituted in your own functions, take
a look at the last 4 tests. You’ll notice that they use a new notation, similar to the notation for partial application we
saw earlier, but with brackets instead of parentheses. This is the notation for iterator slicing. Similar to how partial
application was lazy function calling, iterator slicing is lazy sequence slicing. Like with partial application, it is helpful
to think of $ as the lazy-ify operator, in this case turning normal Python slicing, which is evaluated immediately, into
lazy iterator slicing, which is evaluated only when the elements in the slice are needed.

With that in mind, now that we’ve built our vector field, it’s time to use iterator slicing to play around with it. Try
doing something cool to our vector fields like

• create a magnitude_field where each point is that vector’s magnitude

• combine entire vector fields together with map and the vector addition and multiplication methods we wrote
earlier

then use iterator slicing to take out portions and examine them.

2.7 Case Study 5: vector Part II

For the some of the applications you might want to use your vector_field for, it might be desirable to add some
useful methods to our vector. In this case study, we’re going to be focusing on one in particular: .angle.

.angle will take one argument, another vector, and compute the angle between the two vectors. Mathematically,
the formula for the angle between two vectors is the dot product of the vectors’ respective unit vectors. Thus, before
we can implement .angle, we’re going to need .unit. Mathematically, the formula for the unit vector of a given
vector is that vector divided by its magnitude. Thus, before we can implement .unit, and by extension .angle,
we’ll need to start by implementing division.

2.7.1 __truediv__

Vector division is just scalar division, so we’re going to write a __truediv__ method that takes self as the first
argument and other as the second argument, and returns a new vector the same size as self with every element
divided by other. For an extra challenge, try writing this one in one line using assignment function notation.

Tests:

vector(3, 4) / 1 |> print # vector(pts=(3.0, 4.0))
vector(2, 4) / 2 |> print # vector(pts=(1.0, 2.0))

Hint: Look back at how we implemented scalar multiplication.

Here’s my solution for you to check against:

def __truediv__(self, other) = self.pts |> map$((x) -> x/other) |*> vector

2.7.2 .unit

Next up, .unit. We’re going to write a unit method that takes just self as its argument and returns a new vector
the same size as self with each element divided by the magnitude of self, which we can retrieve with abs. This
should be a very simple one-line function.

Tests:

vector(0, 1).unit() |> print # vector(pts=(0.0, 1.0))
vector(5, 0).unit() |> print # vector(pts=(1.0, 0.0))

24 Chapter 2. Coconut Tutorial

Coconut, Release v1.2.0 [Colonel]

Here’s my solution:

def unit(self) = self / abs(self)

2.7.3 .angle

This one is going to be a little bit more complicated. For starters, the mathematical formula for the angle between
two vectors is the math.acos of the dot product of those vectors’ respective unit vectors, and recall that we already
implemented the dot product of two vectors when we wrote __mul__. So, .angle should take self as the first
argument and other as the second argument, and if other is a vector, use that formula to compute the angle between
self and other, or if other is not a vector, .angle should raise a MatchError. To accomplish this, we’re
going to want to use destructuring assignment to check that other is indeed a vector.

Tests:

import math
vector(2, 0).angle(vector(3, 0)) |> print # 0.0
print(vector(1, 0).angle(vector(0, 2)), math.pi/2) # should be the same
vector(1, 2).angle(5) # MatchError

Hint: Look back at how we checked whether the argument to factorial was an integer using destructuring assign-
ment.

Here’s my solution—take a look:

def angle(self, other is vector) = math.acos(self.unit() * other.unit())

And now it’s time to put it all together. Feel free to substitute in your own versions of the methods we just defined.

import math # necessary for math.acos in .angle

data vector(pts):
"""Immutable n-vector."""
def __new__(cls, *pts):

"""Create a new vector from the given pts."""
if len(pts) == 1 and pts[0] `isinstance` vector:

return pts[0] # vector(v) where v is a vector should return v
else:

return pts |> tuple |> datamaker(cls) # accesses base constructor
def __abs__(self):

"""Return the magnitude of the vector."""
return self.pts |> map$((x) -> x**2) |> sum |> ((s) -> s**0.5)

def __add__(self, other):
"""Add two vectors together."""
vector(other_pts) = other
assert len(other_pts) == len(self.pts)
return map((+), self.pts, other_pts) |*> vector

def __sub__(self, other):
"""Subtract one vector from another."""
vector(other_pts) = other
assert len(other_pts) == len(self.pts)
return map((-), self.pts, other_pts) |*> vector

def __neg__(self):
"""Retrieve the negative of the vector."""
return self.pts |> map$((-)) |*> vector

def __eq__(self, other):
"""Compare whether two vectors are equal."""

2.7. Case Study 5: vector Part II 25

Coconut, Release v1.2.0 [Colonel]

match vector(=self.pts) in other:
return True

else:
return False

def __mul__(self, other):
"""Scalar multiplication and dot product."""
match vector(other_pts) in other:

assert len(other_pts) == len(self.pts)
return map((*), self.pts, other_pts) |> sum # dot product

else:
return self.pts |> map$((*)$(other)) |*> vector # scalar multiplication

def __rmul__(self, other):
"""Necessary to make scalar multiplication commutative."""
return self * other

New one-line functions necessary for finding the angle between vectors:
def __truediv__(self, other) = self.pts |> map$((x) -> x/other) |*> vector
def unit(self) = self / abs(self)
def angle(self, other is vector) = math.acos(self.unit() * other.unit())

Test cases:
vector(3, 4) / 1 |> print # vector(pts=(3.0, 4.0))
vector(2, 4) / 2 |> print # vector(pts=(1.0, 2.0))
vector(0, 1).unit() |> print # vector(pts=(0.0, 1.0))
vector(5, 0).unit() |> print # vector(pts=(1.0, 0.0))
vector(2, 0).angle(vector(3, 0)) |> print # 0.0
print(vector(1, 0).angle(vector(0, 2)), math.pi/2) # should be the same
vector(1, 2).angle(5) # MatchError

One note of warning here: be careful not to leave a blank line when substituting in your methods, or the interpreter
will cut off the code for the vector there. This isn’t a problem in normal Coconut code, only here because we’re
copy-and-pasting into the command line.

Copy, paste! If everything is working, I’d recommend going back to playing around with vector_field applica-
tions using our new methods.

2.8 Filling in the Gaps

And with that, this tutorial is out of case studies—but that doesn’t mean Coconut is out of features! In this last section,
we’ll touch on three of the most important features of Coconut that we managed to miss in our case studies: lazy lists,
function composition, and implicit partials.

2.8.1 Lazy Lists

First up is lazy lists. Lazy lists are lazily-evaluated iterator literals, similar in their laziness to Coconut’s :: operator,
in that any expressions put inside a lazy list won’t be evaluated until that element of the lazy list is needed. The syntax
for lazy lists is exactly the same as the syntax for normal lists, but with “banana brackets” ((| and |)) instead of
normal brackets, like so:

abc = (| a, b, c |)

26 Chapter 2. Coconut Tutorial

Coconut, Release v1.2.0 [Colonel]

2.8.2 Function Composition

Next is function composition. In Coconut, this is accomplished through the .. operator, which takes two functions and
composes them, creating a new function equivalent to (*args,**kwargs) -> f1(f2(*args,**kwargs)).
This can be useful in combination with partial application for piecing together multiple higher-order functions, like
so:

zipsum = map$(sum)..zip

Function composition also gets rid of the need for lots of parentheses when chaining function calls, like so:

plus1..square(3) == 10

2.8.3 Implicit Partials

Last is implicit partials. Coconut supports a number of different “incomplete” expressions that will evaluate to a
function that takes in the part necessary to complete them, that is, an implicit partial application function. The different
allowable expressions are:

.attr

.method(args)
obj.
func$
seq[]
iter$[]
.[slice]
.$[slice]

2.8.4 Further Reading

And that’s it for this tutorial! But that’s hardly it for Coconut. All of the features examined in this tutorial, as well as
a bunch of others, are documented in detail in Coconut’s comprehensive documentation.

Also, if you have any other questions not covered in this tutorial, feel free to ask around at Coconut’s Gitter, a GitHub-
integrated chat room for Coconut developers.

Finally, Coconut is a new, growing language, and if you’d like to get involved in the development of Coconut, all the
code is available completely open-source on Coconut’s GitHub. Contributing is a simple as forking the code, making
your changes, and proposing a pull request.

2.8. Filling in the Gaps 27

http://coconut.readthedocs.io/en/master/DOCS.html
https://gitter.im/evhub/coconut
https://github.com/evhub/coconut

Coconut, Release v1.2.0 [Colonel]

28 Chapter 2. Coconut Tutorial

CHAPTER 3

Coconut Documentation

1. Overview

2. Compilation

(a) Installation

(b) Usage

i. Positional Arguments

ii. Optional Arguments

(c) Naming Source Files

(d) Compilation Modes

(e) Compatible Python Versions

(f) Allowable Targets

(g) strict Mode

(h) IPython/ Jupyter Support

i. Extension

ii. Kernel

3. Operators

(a) Lambdas

(b) Partial Application

(c) Pipeline

(d) Compose

(e) Chain

(f) Iterator Slicing

(g) Unicode Alternatives

4. Keywords

(a) data

(b) match

(c) case

29

Coconut, Release v1.2.0 [Colonel]

(d) Backslash-Escaping

(e) Reserved Variables

5. Expressions

(a) Statement Lambdas

(b) Lazy Lists

(c) Implicit Partial Application

(d) Set Literals

(e) Imaginary Literals

(f) Underscore Separators

6. Function Notation

(a) Tail Call Optimization

(b) Operator Functions

(c) Assignment Functions

(d) Infix Functions

(e) Pattern-Matching Functions

7. Statements

(a) Destructuring Assignment

(b) Decorators

(c) else Statements

(d) except Statements

(e) Implicit pass

(f) Parenthetical Continuation

(g) In-line global And nonlocal Assignment

(h) Code Passthrough

8. Built-Ins

(a) addpattern

(b) prepattern

(c) reduce

(d) takewhile

(e) dropwhile

(f) tee

(g) consume

(h) count

(i) map and zip

(j) datamaker

(k) recursive_iterator

30 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

(l) parallel_map

(m) concurrent_map

(n) MatchError

9. Coconut Utilities

(a) Syntax Highlighting

i. SublimeText

ii. Pygments

(b) coconut.__coconut__

(c) coconut.convenience

i. parse

ii. setup

iii. cmd

iv. version

v. CoconutException

3.1 Overview

This documentation covers all the technical details of the Coconut Programming Language, and is intended as a
reference specification, not a tutorialized introduction. For a full introduction and tutorial of Coconut, see the tutorial.

Coconut is a variant of Python built for simple, elegant, Pythonic functional programming. Coconut syntax is
a strict superset of Python 3 syntax. That means users familiar with Python will already be familiar with most of
Coconut.

The Coconut compiler turns Coconut code into Python code. The primary method of accessing the Coconut compiler
is through the Coconut command-line utility, which also features an interpreter for real-time compilation. In addition
to the command-line utility, Coconut also supports the use of IPython/ Jupyter notebooks.

While most of Coconut gets its inspiration simply from trying to make functional programming work in Python,
additional inspiration came from Haskell, CoffeeScript, F#, and patterns.py.

3.2 Compilation

3.2.1 Installation

Since Coconut is hosted on the Python Package Index, it can be installed easily using pip. Simply install Python,
open up a command-line prompt, and enter

pip install coconut

which will install Coconut and its required dependencies. Coconut also has some optional dependencies, which can
be installed by entering

pip install coconut[all]

3.1. Overview 31

http://evhub.github.io/coconut/
http://coconut.readthedocs.io/en/master/HELP.html
https://www.python.org/
https://www.haskell.org/
http://coffeescript.org/
http://fsharp.org/
https://github.com/Suor/patterns
https://pypi.python.org/pypi/coconut
https://www.python.org/downloads/

Coconut, Release v1.2.0 [Colonel]

which will enable the use of Coconut’s --jobs, --watch, and --jupyter flags. To install the optional depen-
dencies only for a particular flag, simply put the flag name in place of all.

Alternatively, if you want to test out Coconut’s latest and greatest, enter

pip install coconut-develop

which will install the most recent working development build (optional dependency installation is also supported
in the same manner as above if you want). For more information on the current development build, check out the
development version of this documentation. Be warned: coconut-develop is likely to be unstable—if you find a
bug, please report it by creating a new issue.

3.2.2 Usage

coconut [-h] [-v] [source] [dest] [-t version] [-s] [-l] [-k] [-p] [-a] [-w] [-d] [-
→˓r] [-n] [-m] [-i] [-q] [-f] [-c code] [-j processes] [--jupyter ...] [--tutorial] [-
→˓-documentation] [--style name] [--recursion-limit limit] [--verbose]

Positional Arguments

source path to the coconut file/folder to compile
dest destination directory for compiled files (defaults to the
→˓source directory)

Optional Arguments

-h, --help show this help message and exit
-v, --version print Coconut and Python version information
-t, --target specify target Python version (defaults to universal)
-s, --strict enforce code cleanliness standards
-l, --line-numbers add line number comments for ease of debugging
-k, --keep-lines include source code in comments for ease of debugging
-p, --package compile source as part of a package (defaults to only if
→˓source is a directory)
-a, --standalone compile source as standalone files (defaults to only if
→˓source is a single file)
-w, --watch watch a directory and recompile on changes (requires watchdog)
-d, --display print compiled Python
-r, --run run compiled Python (often used with --nowrite)
-n, --nowrite disable writing compiled Python
-m, --minify compress compiled Python
-i, --interact force the interpreter to start (otherwise starts if no other
→˓command is given)
-q, --quiet suppress all informational output (combine with --display to
→˓write runnable code to stdout)
-f, --force force overwriting of compiled Python (otherwise only
→˓overwrites when source code or compilation parameters change)
-c, --code code run a line of Coconut passed in as a string (can also be
→˓passed into stdin)
-j, --jobs processes number of additional processes to use (defaults to 0) (pass
→˓'sys' to use machine default)
--jupyter, --ipython run Jupyter/IPython with Coconut as the kernel (remaining
→˓args passed to Jupyter)

32 Chapter 3. Coconut Documentation

https://github.com/evhub/coconut/tree/develop
http://coconut.readthedocs.org/en/develop/DOCS.html
https://github.com/evhub/coconut/issues/new

Coconut, Release v1.2.0 [Colonel]

--tutorial open the Coconut tutorial in the default web browser
--documentation open the Coconut documentation in the default web browser
--style name pygments syntax highlighting style (or 'none' to disable)
--recursion-limit set maximum recursion depth in compiler (defaults to 2000)
--verbose print verbose debug output

3.2.3 Naming Source Files

Coconut source files should, so the compiler can recognize them, use the extension .coco (preferred), .coc, or
.coconut. When Coconut compiles a .coco (or .coc / .coconut) file, it will compile to another file with the
same name, except with .py instead of .coco, which will hold the compiled code. If an extension other than .py is
desired for the compiled files, such as .pyde for Python Processing, then that extension can be put before .coco in
the source file name, and it will be used instead of .py for the compiled files. For example, name.coco will compile
to name.py, whereas name.pyde.coco will compile to name.pyde.

3.2.4 Compilation Modes

Files compiled by the coconut command-line utility will vary based on compilation parameters. If an entire di-
rectory of files is compiled (which the compiler will search recursively for any folders containing .coco, .coc, or
.coconut files), a __coconut__.py file will be created to house necessary functions (package mode), whereas if
only a single file is compiled, that information will be stored within a header inside the file (standalone mode). Stan-
dalone mode is better for single files because it gets rid of the overhead involved in importing __coconut__.py,
but package mode is better for large packages because it gets rid of the need to run the same Coconut header code
again in every file, since it can just be imported from __coconut__.py.

By default, if the source argument to the command-line utility is a file, it will perform standalone compilation on it,
whereas if it is a directory, it will recursively search for all .coco (or .coc / .coconut) files and perform package
compilation on them. Thus, in most cases, the mode chosen by Coconut automatically will be the right one. But if
it is very important that no additional files like __coconut__.py be created, for example, then the command-line
utility can also be forced to use a specific mode with the --package (-p) and --standalone (-a) flags.

3.2.5 Compatible Python Versions

While Coconut syntax is based off of Python 3, Coconut code compiled in universal mode (the default --target),
and the Coconut compiler, should run on any Python version >= 2.6 on the 2.x branch or >= 3.2 on the 3.x
branch.

Note: The tested against implementations are CPython 2.6,2.7,3.2,3.3,3.4,3.5 and PyPy 2.7,3.2.

As part of Coconut’s cross-compatibility efforts, Coconut adds in new Python 3 built-ins and overwrites Python 2
built-ins to use the Python 3 versions where possible. Additionally, Coconut also overrides some Python 3 built-ins
for optimization purposes. If access to the Python versions is desired, the old built-ins can be retrieved by prefixing
them with py_. The Python built-ins available are:

• py_chr

• py_filter

• py_hex

• py_input

• py_raw_input

• py_int

3.2. Compilation 33

http://py.processing.org/
https://www.python.org/
http://pypy.org/

Coconut, Release v1.2.0 [Colonel]

• py_oct

• py_open

• py_print

• py_range

• py_xrange

• py_str

• py_map

• py_zip

Finally, while Coconut will try to compile Python-3-specific syntax to its universal equivalent, the follow constructs
have no equivalent in Python 2, and require a target of at least 3 to be specified to be used:

• destructuring assignment with *s (use Coconut pattern-matching instead),

• function type annotation,

• the nonlocal keyword,

• exec used in a context where it must be a function,

• keyword class definition,

• tuples and lists with * unpacking or dicts with ** unpacking (requires --target 3.5),

• @ as matrix multiplication (requires --target 3.5),

• async and await statements (requires --target 3.5), and

• formatting f strings (requires --target 3.6).

3.2.6 Allowable Targets

If the version of Python that the compiled code will be running on is known ahead of time, a target should be specified
with --target. The given target will only affect the compiled code and whether or not certain Python-3-specific
syntax is allowed, detailed below. Where Python 3 and Python 2 syntax standards differ, Coconut syntax will always
follow Python 3 across all targets. The supported targets are:

• universal (default) (will work on any of the below),

• 2, 26 (will work on any Python >= 2.6 but < 3),

• 27 (will work on any Python >= 2.7 but < 3),

• 3, 32 (will work on any Python >= 3.2),

• 33, 34 (will work on any Python >= 3.3),

• 35 (will work on any Python >= 3.5),

• 36 (will work on any Python >= 3.6),

• sys (chooses the specific target corresponding to the current version).

Note: Periods are ignored in target specifications, such that the target 2.7 is equivalent to the target 27.

34 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

3.2.7 strict Mode

If the --strict (or -s) flag is enabled, Coconut will throw errors on various style problems. These are

• mixing of tabs and spaces (without --strict will show a Warning),

• missing new line at end of file (without --strict will show a Warning),

• use of from __future__ imports (without --strict will show a Warning)

• trailing whitespace at end of lines,

• semicolons at end of lines,

• use of the Python-style lambda statement,

• use of u to denote Unicode strings, and

• use of backslash continuations (use parenthetical continuation instead).

It is recommended that you use the --strict (or -s) flag if you are starting a new Coconut project, as it will help
you write cleaner code.

3.2.8 IPython/ Jupyter Support

If you prefer IPython (the python kernel for the Jupyter framework) to the normal Python shell, Coconut can be used
as an IPython extension or Jupyter kernel.

Extension

If Coconut is used as an extension, a special magic command will send snippets of code to be evaluated using Coconut
instead of IPython, but IPython will still be used as the default. The line magic %load_ext coconut will load
Coconut as an extension, adding the %coconut and %%coconut magics. The %coconut line magic will run a line
of Coconut with default parameters, and the %%coconut block magic will take command-line arguments on the first
line, and run any Coconut code provided in the rest of the cell with those parameters.

Kernel

If Coconut is used as a kernel, all code in the console or notebook will be sent directly to Coconut instead of Python
to be evaluated. The command coconut --jupyter notebook (or coconut --ipython notebook)
will launch an IPython/ Jupyter notebook using Coconut as the kernel and the command coconut --jupyter
console (or coconut --ipython console) will launch an IPython/ Jupyter console using Coconut as the
kernel. Additionally, the command coconut --jupyter (or coconut --ipython) will add Coconut as a
language option inside of all IPython/ Jupyter notebooks, even those not launched with Coconut. This command may
need to be re-run when a new version of Coconut is installed.

3.3 Operators

3.3.1 Lambdas

Coconut provides the simple, clean -> operator as an alternative to Python’s lambda statements. The syntax for
the -> operator is (arguments) -> expression. The operator has the same precedence as the old statement,
which means it will often be necessary to surround the lambda in parentheses.

3.3. Operators 35

http://ipython.org/
http://jupyter.org/

Coconut, Release v1.2.0 [Colonel]

Additionally, Coconut also supports an implicit usage of the -> operator of the form (-> expression), which is
equivalent to ((_=None) -> expression), which allows an implicit lambda to be used both when no arguments
are required, and when one argument (assigned to _) is required.

Note: If normal lambda syntax is insufficient, Coconut also supports an extended lambda syntax in the form of state-
ment lambdas.

Rationale

In Python, lambdas are ugly and bulky, requiring the entire word lambda to be written out every time one is con-
structed. This is fine if in-line functions are very rarely needed, but in functional programming in-line functions are an
essential tool.

Python Docs

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a shorthand to create
anonymous functions; the expression (arguments) -> expression yields a function object. The unnamed
object behaves like a function object defined with:

def <lambda>(arguments):
return expression

Note that functions created with lambda forms cannot contain statements or annotations.

Example

Coconut

dubsums = map((x, y) -> 2*(x+y), range(0, 10), range(10, 20))
dubsums |> list |> print

Python

dubsums = map(lambda x, y: 2*(x+y), range(0, 10), range(10, 20))
print(list(dubsums))

3.3.2 Partial Application

Coconut uses a $ sign right after a function’s name but before the open parenthesis used to call the function to denote
partial application. It has the same precedence as subscription.

Rationale

Partial application, or currying, is a mainstay of functional programming, and for good reason: it allows the dynamic
customization of functions to fit the needs of where they are being used. Partial application allows a new function to
be created out of an old function with some of its arguments pre-specified.

36 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Python Docs

Return a new partial object which when called will behave like func called with the positional arguments args and
keyword arguments keywords. If more arguments are supplied to the call, they are appended to args. If additional
keyword arguments are supplied, they extend and override keywords. Roughly equivalent to:

def partial(func, *args, **keywords):
def newfunc(*fargs, **fkeywords):

newkeywords = keywords.copy()
newkeywords.update(fkeywords)
return func(*(args + fargs), **newkeywords)

newfunc.func = func
newfunc.args = args
newfunc.keywords = keywords
return newfunc

The partial object is used for partial function application which “freezes” some portion of a function’s arguments
and/or keywords resulting in a new object with a simplified signature.

Example

Coconut

expnums = map(pow$(2), range(5))
expnums |> list |> print

Python

import functools
expnums = map(functools.partial(pow, 2), range(5))
print(list(expnums))

3.3.3 Pipeline

Coconut uses pipe operators for pipeline-style function application. All the operators have a precedence in-between in-
fix calls and comparisons and are left-associative. All operators also support in-place versions. The different operators
are:

(|>) => pipe forward
(|*>) => multiple-argument pipe forward
(<|) => pipe backward
(<*|) => multiple-argument pipe backward

Example

Coconut

def sq(x) = x**2
(1, 2) |*> (+) |> sq |> print

3.3. Operators 37

Coconut, Release v1.2.0 [Colonel]

Python

import operator
def sq(x): return x**2
print(sq(operator.add(1, 2)))

3.3.4 Compose

Coconut uses the .. operator for function composition. It has a precedence in-between subscription and exponentia-
tion. The in-place operator is ..=.

Example

Coconut

fog = f..g

Python

unlike this simple lambda, .. produces a pickleable object
fog = lambda *args, **kwargs: f(g(*args, **kwargs))

3.3.5 Chain

Coconut uses the :: operator for iterator chaining. Coconut’s iterator chaining is done lazily, in that the arguments
are not evaluated until they are needed. It has a precedence in-between bitwise or and infix calls. The in-place operator
is ::=.

Rationale

A useful tool to make working with iterators as easy as working with sequences is the ability to lazily combine multiple
iterators together. This operation is called chain, and is equivalent to addition with sequences, except that nothing gets
evaluated until it is needed.

Python Docs

Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the next iterable,
until all of the iterables are exhausted. Used for treating consecutive sequences as a single sequence. Chained inputs
are evaluated lazily. Roughly equivalent to:

def chain(*iterables):
chain('ABC', 'DEF') --> A B C D E F
for it in iterables:

for element in it:
yield element

38 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

def N(n=0) = (n,) :: N(n+1) # no infinite loop because :: is lazy

(range(-10, 0) :: N())$[5:15] |> list |> print

Python

Can’t be done without a complicated iterator comprehension in place of the lazy chaining. See the compiled code for
the Python syntax.

3.3.6 Iterator Slicing

Coconut uses a $ sign right after an iterator before a slice to perform iterator slicing. Coconut’s iterator slicing works
much the same as Python’s sequence slicing, and looks much the same as Coconut’s partial application, but with
brackets instead of parentheses. It has the same precedence as subscription.

Iterator slicing works just like sequence slicing, including support for negative indices and slices, and support for
slice objects in the same way as can be done with normal slicing. Iterator slicing makes no guarantee, however, that
the original iterator passed to it be preserved (to preserve the iterator, use Coconut’s tee function).

Coconut’s iterator slicing is very similar to Python’s itertools.islice, but unlike itertools.islice,
Coconut’s iterator slicing supports negative indices, and will preferentially call an object’s __getitem__, if it exists.
Coconut’s iterator slicing is also optimized to work well with Coconut’s map, zip, range, and count objects, only
computing the elements of each that are actually necessary to extract the desired slice.

Example

Coconut

map((x)->x*2, range(10**100))$[-1] |> print

Python

Can’t be done without a complicated iterator slicing function and inspection of custom objects. The necessary defini-
tions in Python can be found in the Coconut header.

3.3.7 Unicode Alternatives

Coconut supports Unicode alternatives to many different operator symbols. The Unicode alternatives are relatively
straightforward, and chosen to reflect the look and/or meaning of the original symbol.

Full List

3.3. Operators 39

Coconut, Release v1.2.0 [Colonel]

→ (\u2192) => "->"
(\u21a6) => "|>"

* (*\u21a6) => "|*>"
(\u21a4) => "<|"

* (\u21a4*) => "<*|"
(\u22c5) => "*"

↑ (\u2191) => "**"
÷ (\xf7) => "/"
÷/ (\xf7/) => "//"
(\u2218) => ".."
(\u2212) => "-" (only subtraction)
(\u207b) => "-" (only negation)

¬ (\xac) => "~"
(\u2260) or ¬= (\xac=) => "!="
(\u2264) => "<="
(\u2265) => ">="
(\u2227) or (\u2229) => "&"
(\u2228) or (\u222a) => "|"
(\u22bb) or (\u2295) => "^"

« (\xab) => "<<"
» (\xbb) => ">>"
... (\u2026) => "..."
× (\xd7) => "@" (only matrix multiplication)

3.4 Keywords

3.4.1 data

The syntax for data blocks is a cross between the syntax for functions and the syntax for classes. The first line looks
like a function definition, but the rest of the body looks like a class, usually containing method definitions. This is
because while data blocks actually end up as classes in Python, Coconut automatically creates a special, immutable
constructor based on the given arguments.

Coconut data blocks create immutable classes derived from collections.namedtuple and made immutable
with __slots__. Coconut data statement syntax looks like:

data <name>(<args>):
<body>

<name> is the name of the new data type, <args> are the arguments to its constructor as well as the names of its
attributes, and <body> contains the data type’s methods.

Subclassing data types can be done easily by inheriting from them in a normal Python class, although to make the
new subclass immutable, the line

__slots__ = ()

will need to be added to the subclass before any method or attribute definitions.

Rationale

A mainstay of functional programming that Coconut improves in Python is the use of values, or immutable data types.
Immutable data can be very useful because it guarantees that once you have some data it won’t change, but in Python
creating custom immutable data types is difficult. Coconut makes it very easy by providing data blocks.

40 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Python Docs

Returns a new tuple subclass. The new subclass is used to create tuple-like objects that have fields accessible by
attribute lookup as well as being indexable and iterable. Instances of the subclass also have a helpful docstring (with
type names and field names) and a helpful __repr__() method which lists the tuple contents in a name=value
format.

Any valid Python identifier may be used for a field name except for names starting with an underscore. Valid identifiers
consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a keyword such as
class, for, return, global, pass, or raise.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more memory than
regular tuples.

Examples

Coconut

data vector(x, y):
def __abs__(self):

return (self.x**2 + self.y**2)**.5

v = vector(3, 4)
v |> print # all data types come with a built-in __repr__
v |> abs |> print
v.x = 2 # this will fail because data objects are immutable

Showcases the syntax, features, and immutable nature of data types.

data Empty(): pass
data Leaf(n): pass
data Node(l, r): pass
Tree = (Empty, Leaf, Node)

def size(Tree()) = 0

@addpattern(size)
def size(Tree(n)) = 1

@addpattern(size)
def size(Tree(l, r)) = size(l) + size(r)

size(Node(Empty(), Leaf(10))) == 1

Showcases the algebraic nature of data types when combined with pattern-matching.

Python

import collections
class vector(collections.namedtuple("vector", "x, y")):

__slots__ = ()
def __abs__(self):

return (self.x**2 + self.y**2)**.5

v = vector(3, 4)

3.4. Keywords 41

Coconut, Release v1.2.0 [Colonel]

print(v)
print(abs(v))
v.x = 2

import collections
class Empty(collections.namedtuple("Empty", "")):

__slots__ = ()
class Leaf(collections.namedtuple("Leaf", "n")):

__slots__ = ()
class Node(collections.namedtuple("Node", "l, r")):

__slots__ = ()

def size(tree):
if isinstance(tree, Empty):

return 0
elif isinstance(tree, Leaf):

return 1
elif isinstance(tree, Node):

return size(tree[0]) + size(tree[1])
else:

raise MatchError()

size(Node(Empty(), Leaf(10))) == 1

3.4.2 match

Coconut provides fully-featured, functional pattern-matching through its match statements.

Overview

Match statements follow the basic syntax match <pattern> in <value>. The match statement will attempt
to match the value against the pattern, and if successful, bind any variables in the pattern to whatever is in the same
position in the value, and execute the code below the match statement. Match statements also support, in their basic
syntax, an if <cond> that will check the condition after executing the match before executing the code below, and
an else statement afterwards that will only be executed if the match statement is not. What is allowed in the match
statement’s pattern has no equivalent in Python, and thus the specifications below are provided to explain it.

Syntax Specification

Coconut match statement syntax is

match <pattern> in <value> [if <cond>]:
<body>

[else:
<body>]

where <value> is the item to match against, <cond> is an optional additional check, and <body> is simply code
that is executed if the header above it succeeds. <pattern> follows its own, special syntax, defined roughly like so:

pattern ::= (
"(" pattern ")" # parentheses
| "None" | "True" | "False" # constants
| "=" NAME # check

42 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

| NUMBER # numbers
| STRING # strings
| [pattern "as"] NAME # capture
| NAME "(" patterns ")" # data types
| "(" patterns ")" # sequences can be in tuple form
| "[" patterns "]" # or in list form
| "(|" patterns "|)" # lazy lists
| "{" pattern_pairs "}" # dictionaries
| ["s"] "{" pattern_consts "}" # sets
| ("(" | "[") # star splits

patterns,
"*" middle,
patterns

(")" | "]") # must both be parens or brackets
| (# head-tail splits

"(" patterns ")"
| "[" patterns "]"

) "+" pattern
| pattern "+" (# init-last splits

"(" patterns ")"
| "[" patterns "]"

)
| (# head-last splits

"(" patterns ")"
| "[" patterns "]"

) "+" pattern "+" (
"(" patterns ")" # this match must be the same
| "[" patterns "]" # construct as the first match

)
| (# iterator splits

"(" patterns ")"
| "[" patterns "]"
| "(|" patterns "|)"

) "::" pattern
| pattern "is" exprs # type-checking
| pattern "and" pattern # match all
| pattern "or" pattern # match any
)

Semantic Specification

match statements will take their pattern and attempt to “match” against it, performing the checks and deconstructions
on the arguments as specified by the pattern. The different constructs that can be specified in a pattern, and their
function, are:

• Constants, Numbers, and Strings: will only match to the same constant, number, or string in the same position
in the arguments.

• Variables: will match to anything, and will be bound to whatever they match to, with some exceptions:

– If the same variable is used multiple times, a check will be performed that each use match to the same
value.

– If the variable name _ is used, nothing will be bound and everything will always match to it.

• Explicit Bindings (<pattern> as <var>): will bind <var> to <pattern>.

• Checks (=<var>): will check that whatever is in that position is equal to the previously defined variable <var>.

3.4. Keywords 43

Coconut, Release v1.2.0 [Colonel]

• Type Checks (<var> is <types>): will check that whatever is in that position is of type(s) <types>
before binding the <var>.

• Data Types (<name>(<args>)): will check that whatever is in that position is of data type <name> and will
match the attributes to <args>.

• Lists ([<patterns>]), Tuples ((<patterns>)), or Lazy lists ((|<patterns>|)): will only match
a sequence (collections.abc.Sequence) of the same length, and will check the contents against
<patterns>.

• Dicts ({<pairs>}): will only match a mapping (collections.abc.Mapping) of the same length, and
will check the contents against <pairs>.

• Sets ({<constants>}): will only match a set (collections.abc.Set) of the same length and contents.

• Head-Tail Splits (<list/tuple> + <var>): will match the beginning of the sequence against the
<list/tuple>, then bind the rest to <var>, and make it the type of the construct used.

• Init-Last Splits (<var> + <list/tuple>): exactly the same as head-tail splits, but on the end instead of
the beginning of the sequence.

• Head-Last Splits (<list/tuple> + <var> + <list/tuple>): the combination of a head-tail and an
init-last split.

• Iterator Splits (<list/tuple/lazy list> :: <var>, or <lazy list>): will match the beginning
of an iterable (collections.abc.Iterable) against the <list/tuple/lazy list>, then bind the
rest to <var> or check that the iterable is done.

Note: Like iterator slicing, iterator and lazy list matching makes no guarantee that the original iterator matched
against be preserved (to preserve the iterator, use Coconut’s tee function.

When checking whether or not an object can be matched against in a particular fashion, Coconut makes use of Python’s
abstract base classes. Therefore, to enable proper matching for a custom object, register it with the proper abstract
base classes.

Examples

Coconut

def factorial(value):
match 0 in value:

return 1
else: match n is int in value if n > 0: # possible because of Coconut's

return n * factorial(n-1) # enhanced else statements
else:

raise TypeError("invalid argument to factorial of: "+repr(value))

3 |> factorial |> print

Showcases else statements, which work much like else statements in Python: the code under an else statement
is only executed if the corresponding match fails.

data point(x, y):
def transform(self, other):

match point(x, y) in other:
return point(self.x + x, self.y + y)

else:
raise TypeError("arg to transform must be a point")

def __eq__(self, other):

44 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

match point(=self.x, =self.y) in other:
return True

else:
return False

point(1,2) |> point(3,4).transform |> print
point(1,2) |> point(1,2).__eq__ |> print

Showcases matching to data types. Values defined by the user with the data statement can be matched against and
their contents accessed by specifically referencing arguments to the data type’s constructor.

data Empty(): pass
data Leaf(n): pass
data Node(l, r): pass
Tree = (Empty, Leaf, Node)

def depth(Tree()) = 0

@addpattern(depth)
def depth(Tree(n)) = 1

@addpattern(depth)
def depth(Tree(l, r)) = 1 + max([depth(l), depth(r)])

Empty() |> depth |> print
Leaf(5) |> depth |> print
Node(Leaf(2), Node(Empty(), Leaf(3))) |> depth |> print

Showcases how the combination of data types and match statements can be used to powerful effect to replicate the
usage of algebraic data types in other functional programming languages.

def duplicate_first(value):
match [x] + xs as l in value:

return [x] + l
else:

raise TypeError()

[1,2,3] |> duplicate_first |> print

Showcases head-tail splitting, one of the most common uses of pattern-matching, where a + <var> (or :: <var>
for any iterable) at the end of a list or tuple literal can be used to match the rest of the sequence.

def sieve([head] :: tail) = [head] :: sieve(n for n in tail if n % head)

@addpattern(sieve)
def sieve((||)) = []

Showcases how to match against iterators, namely that the empty iterator case ((||)) must come last, otherwise that
case will exhaust the whole iterator before any other pattern has a chance to match against it.

Python

Can’t be done without a long series of checks for each match statement. See the compiled code for the Python syntax.

3.4. Keywords 45

Coconut, Release v1.2.0 [Colonel]

3.4.3 case

Coconut’s case statement is an extension of Coconut’s match statement for performing multiple match statements
against the same value, where only one of them should succeed. Unlike lone match statements, only one match
statement inside of a case block will ever succeed, and thus more general matches should be put below more specific
ones.

Each pattern in a case block is checked until a match is found, and then the corresponding body is executed, and the
case block terminated. The syntax for case blocks is

case <value>:
match <pattern> [if <cond>]:

<body>
match <pattern> [if <cond>]:

<body>
...

[else:
<body>]

where <pattern> is any match pattern, <value> is the item to match against, <cond> is an optional additional
check, and <body> is simply code that is executed if the header above it succeeds. Note the absence of an in in the
match statements: that’s because the <value> in case <value> is taking its place.

Example

Coconut

def classify_sequence(value):
out = "" # unlike with normal matches, only one of the patterns
case value: # will match, and out will only get appended to once

match ():
out += "empty"

match (_,):
out += "singleton"

match (x,x):
out += "duplicate pair of "+str(x)

match (_,_):
out += "pair"

match _ is (tuple, list):
out += "sequence"

else:
raise TypeError()

return out

[] |> classify_sequence |> print
() |> classify_sequence |> print
[1] |> classify_sequence |> print
(1,1) |> classify_sequence |> print
(1,2) |> classify_sequence |> print
(1,1,1) |> classify_sequence |> print

Python

Can’t be done without a long series of checks for each match statement. See the compiled code for the Python syntax.

46 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

3.4.4 Backslash-Escaping

In Coconut, the keywords data, match, case, async (keyword in Python 3.5), and await (keyword in Python
3.5) are also valid variable names. While Coconut can disambiguate these two use cases, when using one of these
keywords as a variable name, a backslash is allowed in front to be explicit about using a keyword as a variable name.

Example

Coconut

\data = 5
print(\data)

Python

data = 5
print(data)

3.4.5 Reserved Variables

It is illegal for a variable name to start with _coconut, as these variables are reserved for the compiler.

3.5 Expressions

3.5.1 Statement Lambdas

The statement lambda syntax is an extension of the normal lambda syntax to support statements, not just expressions.

The syntax for a statement lambda is:

def (arguments) -> statement; statement; ...

where statement can be an assignment statement or a keyword statement. If the last statement (not followed
by a semicolon) is an expression, it will automatically be returned.

Statement lambdas also support implicit lambda syntax, where when the arguments are omitted, as in def -> _,
def (_=None) -> _ is assumed.

Example

Coconut

L |> map$(def (x) -> y = 1 / x; y*(1 - y))

3.5. Expressions 47

Coconut, Release v1.2.0 [Colonel]

Python

def _lambda(x):
y = 1 / x
return y*(1 - y)

map(_lambda, L)

3.5.2 Lazy Lists

Coconut supports the creation of lazy lists, where the contents in the list will be treated as an iterator and not evaluated
until they are needed. Lazy lists can be created in Coconut simply by simply surrounding a comma-seperated list of
items with (| and |) (so-called “banana brackets”) instead of [and] for a list or (and) for a tuple.

Lazy lists use the same machinery as iterator chaining to make themselves lazy, and thus the lazy list (| x,y |) is
equivalent to the iterator chaining expression (x,) :: (y,), although the lazy list won’t construct the interme-
diate tuples.

Rationale

Lazy lists, where sequences are only evaluated when their contents are requested, are a mainstay of functional pro-
gramming, allowing for dynamic evaluation of the list’s contents.

Example

Coconut

(| print("hello,"), print("world!") |) |> consume

Python

Can’t be done without a complicated iterator comprehension in place of the lazy list. See the compiled code for the
Python syntax.

3.5.3 Implicit Partial Application

Coconut supports a number of different syntactical aliases for common partial application use cases. These are:

.attr => operator.attrgetter("attr")

.method(args) => operator.methodcaller("method", args)
obj. => getattr$(obj)
func$ => ($)$(func)
seq[] => operator.getitem$(seq)
iter$[] => # the equivalent of seq[] for iterators
.[a:b:c] => operator.itemgetter(slice(a, b, c))
.$[a:b:c] => # the equivalent of .[a:b:c] for iterators

48 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

1 |> "123"[]
mod$ <| 5 <| 3

Python

"123"[1]
mod(5, 3)

3.5.4 Set Literals

Coconut allows an optional s to be prepended in front of Python set literals. While in most cases this does nothing, in
the case of the empty set it lets Coconut know that it is an empty set and not an empty dictionary. Additionally, an f
is also supported, in which case a Python frozenset will be generated instead of a normal set.

Example

Coconut

empty_frozen_set = f{}

Python

empty_frozen_set = frozenset()

3.5.5 Imaginary Literals

In addition to Python’s <num>j or <num>J notation for imaginary literals, Coconut also supports <num>i or
<num>I, to make imaginary literals more readable if used in a mathematical context.

Python Docs

Imaginary literals are described by the following lexical definitions:

imagnumber ::= (floatnumber | intpart) ("j" | "J" | "i" | "I")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+4i). Some examples of imaginary literals:

3.14i 10.i 10i .001i 1e100i 3.14e-10i

3.5. Expressions 49

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

3 + 4i |> abs |> print

Python

print(abs(3 + 4j))

3.5.6 Underscore Separators

Coconut allows for one underscore between digits and after base specifiers in numeric literals. These underscores are
ignored and should only be used to increase code readability.

Example

Coconut

10_000_000.0

Python

10000000.0

3.6 Function Notation

3.6.1 Tail Call Optimization

Coconut will perform automatic tail call optimization on any function that meets the following criteria:

1. it must directly return a call to another function (using either return or assignment function notation) and

2. it must not be a generator (uses yield) or an asynchronous function (uses async).

Note: Tail call optimization will work even for 1) mutual recursion and 2) pattern-matching functions split across
multiple definitions using addpattern or prepattern.

If you are encountering a RuntimeError due to maximum recursion depth, it is highly recommended that you
rewrite your function to meet either the criteria above for tail call optimization, or the corresponding criteria for
recursive_iterator, either of which should prevent such errors.

50 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

def factorial(n, acc=1):
case n:

match 0:
return acc

match _ is int if n > 0:
return factorial(n-1, acc*n)

else:
raise TypeError("the argument to factorial must be an integer >= 0")

Python

Can’t be done without rewriting the function.

3.6.2 Operator Functions

Coconut uses a simple operator function short-hand: surround an operator with parentheses to retrieve its function.
Similarly to iterator comprehensions, if the operator function is the only argument to a function, the parentheses of the
function call can also serve as the parentheses for the operator function.

Rationale

A very common thing to do in functional programming is to make use of function versions of built-in operators:
currying them, composing them, and piping them. To make this easy, Coconut provides a short-hand syntax to access
operator functions.

Full List

(|>) => # pipe forward
(|*>) => # multi-arg pipe forward
(<|) => # pipe backward
(<*|) => # multi-arg pipe backward
(..) => # function composition
(.) => (getattr)
(::) => (itertools.chain) # will not evaluate its arguments lazily
($) => (functools.partial)
(+) => (operator.add)
(-) => # 1 arg: operator.neg, 2 args: operator.sub
(*) => (operator.mul)
(**) => (operator.pow)
(/) => (operator.truediv)
(//) => (operator.floordiv)
(%) => (operator.mod)
(&) => (operator.and_)
(^) => (operator.xor)
(|) => (operator.or_)
(<<) => (operator.lshift)
(>>) => (operator.rshift)

3.6. Function Notation 51

Coconut, Release v1.2.0 [Colonel]

(<) => (operator.lt)
(>) => (operator.gt)
(==) => (operator.eq)
(<=) => (operator.le)
(>=) => (operator.ge)
(!=) => (operator.ne)
(~) => (operator.inv)
(@) => (operator.matmul)
(not) => (operator.not_)
(and) => # boolean and
(or) => # boolean or
(is) => (operator.is_)
(in) => (operator.contains)

Example

Coconut

(range(0, 5), range(5, 10)) |*> map$(+) |> list |> print

Python

import operator
print(list(map(operator.add, range(0, 5), range(5, 10))))

3.6.3 Assignment Functions

Coconut allows for assignment function definition that automatically returns the last line of the function body. An
assignment function is constructed by substituting = for : after the function definition line. Thus, the syntax for
assignment function definition is either

def <name>(<args>) = <expr>

for one-liners or

def <name>(<args>) =
<stmts>
<expr>

for full functions, where <name> is the name of the function, <args> are the functions arguments, <stmts> are
any statements that the function should execute, and <expr> is the value that the function should return.

Note: Assignment function definition can be combined with infix and/or pattern-matching function definition.

Rationale

Coconut’s Assignment function definition is as easy to write as assignment to a lambda, but will appear named in
tracebacks, as it compiles to normal Python function definition.

52 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

def binexp(x) = 2**x
5 |> binexp |> print

Python

def binexp(x): return 2**x
print(binexp(5))

3.6.4 Infix Functions

Coconut allows for infix function calling, where a function is surrounded by backticks and then can have arguments
placed in front of or behind it. Backtick calling has a precedence in-between chaining and piping.

Coconut also supports infix function definition to make defining functions that are intended for infix usage simpler.
The syntax for infix function definition is

def <arg> `<name>` <arg>:
<body>

where <name> is the name of the function, the <arg>s are the function arguments, and <body> is the body of the
function. If an <arg> includes a default, the <arg> must be surrounded in parentheses.

Note: Infix function definition can be combined with assignment and/or pattern-matching function definition.

Rationale

A common idiom in functional programming is to write functions that are intended to behave somewhat like operators,
and to call and define them by placing them between their arguments. Coconut’s infix syntax makes this possible.

Example

Coconut

def a `mod` b = a % b
(x `mod` 2) `print`

Python

def mod(a, b): return a % b
print(mod(x, 2))

3.6. Function Notation 53

Coconut, Release v1.2.0 [Colonel]

3.6.5 Pattern-Matching Functions

Coconut supports pattern-matching / destructuring assignment syntax inside of function definition. The syntax for
pattern-matching function definition is

[match] def <name>(<pattern>, <pattern>, ... [if <cond>]):
<body>

where <name> is the name of the function, <cond> is an optional additional check, <body> is the body of the
function, and <pattern> is defined by Coconut’s match statement. The match keyword at the beginning is
optional, but is sometimes necessary to disambiguate pattern-matching function definition from normal function def-
inition, which will always take precedence. Coconut’s pattern-matching function definition is equivalent to a match
statement that looks like:

def <name>(*args):
match (<pattern>, <pattern>, ...) in args:

<body>
else:

err = MatchError(<error message>)
err.pattern = "def <name>(<pattern>, <pattern>, ...):"
err.value = args
raise err

If pattern-matching function definition fails, it will raise a MatchError object just like destructuring assignment.

Note: Pattern-matching function definition can be combined with assignment and/or infix function definition.

Example

Coconut

def last_two(_ + [a, b]):
return a, b

def xydict_to_xytuple({"x":x is int, "y":y is int}):
return x, y

range(5) |> last_two |> print
{"x":1, "y":2} |> xydict_to_xytuple |> print

Python

Can’t be done without a long series of checks at the top of the function. See the compiled code for the Python syntax.

3.7 Statements

3.7.1 Destructuring Assignment

Coconut supports significantly enhanced destructuring assignment, similar to Python’s tuple/list destructuring, but
much more powerful. The syntax for Coconut’s destructuring assignment is

54 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

[match] <pattern> = <value>

where <value> is any expression and <pattern> is defined by Coconut’s match statement. The match keyword
at the beginning is optional, but is sometimes necessary to disambiguate destructuring assignment from normal assign-
ment, which will always take precedence. Coconut’s destructuring assignment is equivalent to a match statement that
follows the syntax:

match <pattern> in <value>:
pass

else:
err = MatchError(<error message>)
err.pattern = "<pattern>"
err.value = <value>
raise err

If a destructuring assignment statement fails, then instead of continuing on as if a match block had failed, a
MatchError object will be raised describing the failure.

Example

Coconut

def last_two(l):
_ + [a, b] = l
return a, b

[0,1,2,3] |> last_two |> print

Python

Can’t be done without a long series of checks in place of the destructuring assignment statement. See the compiled
code for the Python syntax.

3.7.2 Decorators

Unlike Python, which only supports a single variable or function call in a decorator, Coconut supports any expression.

Example

Coconut

@ wrapper1 .. wrapper2 $(arg)
def func(x) = x**2

Python

3.7. Statements 55

Coconut, Release v1.2.0 [Colonel]

def wrapper(func):
return wrapper1(wrapper2(arg, func))

@wrapper
def func(x):

return x**2

3.7.3 else Statements

Coconut supports the compound statements try, if, and match on the end of an else statement like any simple
statement would be. This is most useful for mixing match and if statements together, but also allows for compound
try statements.

Example

Coconut

try:
unsafe_1()

except MyError:
handle_1()

else: try:
unsafe_2()

except MyError:
handle_2()

Python

try:
unsafe_1()

except MyError:
handle_1()

else:
try:

unsafe_2()
except MyError:

handle_2()

3.7.4 except Statements

Python 3 requires that if multiple exceptions are to be caught, they must be placed inside of parentheses, so as to
disallow Python 2’s use of a comma instead of as. Coconut allows commas in except statements to translate to
catching multiple exceptions without the need for parentheses.

56 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

try:
unsafe_func(arg)

except SyntaxError, ValueError as err:
handle(err)

Python

try:
unsafe_func(arg)

except (SyntaxError, ValueError) as err:
handle(err)

3.7.5 Implicit pass

Coconut supports the simple class name(base) and data name(args) as aliases for class
name(base): pass and data name(args): pass.

Example

Coconut

data Empty
data Leaf(item)
data Node(left, right)

Python

import collections

class Empty(collections.namedtuple("Empty", "")):
__slots__ = ()

class Leaf(collections.namedtuple("Leaf", "n")):
__slots__ = ()

class Node(collections.namedtuple("Node", "l, r")):
__slots__ = ()

3.7.6 Parenthetical Continuation

Coconut allows for the more elegant parenthetical continuation instead of the less elegant backslash continuation in
del, global, nonlocal, and with statements.

3.7. Statements 57

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

global (really_long_global_variable_name_the_first_one,
really_long_global_variable_name_the_second_one)

Python

global really_long_global_variable_name_the_first_one, \
really_long_global_variable_name_the_second_one

3.7.7 In-line global And nonlocal Assignment

Coconut allows for global or nonlocal to precede assignment to a variable or list of variables to make that
assignment global or nonlocal, respectively.

Example

Coconut

global state_a, state_b = 10, 100

Python

global state_a, state_b; state_a, state_b = 10, 100

3.7.8 Code Passthrough

Coconut supports the ability to pass arbitrary code through the compiler without being touched, for compatibility
with other variants of Python, such as Cython or Mython. Anything placed between \(and the corresponding close
parenthesis will be passed through, as well as any line starting with \\, which will have the additional effect of
allowing indentation under it.

Example

Coconut

\\cdef f(x):
return x |> g

58 Chapter 3. Coconut Documentation

http://cython.org/
http://mython.org/

Coconut, Release v1.2.0 [Colonel]

Python

cdef f(x):
return g(x)

3.8 Built-Ins

3.8.1 addpattern

Takes one argument that is a pattern-matching function, and returns a decorator that adds the patterns in the existing
function to the new function being decorated, where the existing patterns are checked first, then the new. Roughly
equivalent to:

def addpattern(base_func):
"""Decorator to add a new case to a pattern-matching function, where the new case

→˓is checked last."""
def pattern_adder(func):

def add_pattern_func(*args, **kwargs):
try:

return base_func(*args, **kwargs)
except MatchError:

return func(*args, **kwargs)
return add_pattern_func

return pattern_adder

Example

Coconut

def factorial(0) = 1

@addpattern(factorial)
def factorial(n) = n * factorial(n - 1)

Python

Can’t be done without a complicated decorator definition and a long series of checks for each pattern-matching. See
the compiled code for the Python syntax.

3.8.2 prepattern

Takes one argument that is a pattern-matching function, and returns a decorator that adds the patterns in the existing
function to the new function being decorated, where the new patterns are checked first, then the existing. Equivalent
to:

def prepattern(base_func):
"""Decorator to add a new case to a pattern-matching function, where the new case

→˓is checked first."""
def pattern_prepender(func):

3.8. Built-Ins 59

Coconut, Release v1.2.0 [Colonel]

return addpattern(func)(base_func)
return pattern_prepender

Example

Coconut

def factorial(n) = n * factorial(n - 1)

@prepattern(factorial)
def factorial(0) = 1

Python

Can’t be done without a complicated decorator definition and a long series of checks for each pattern-matching. See
the compiled code for the Python syntax.

3.8.3 reduce

Coconut re-introduces Python 2’s reduce built-in, using the functools.reduce version.

Python Docs

reduce(function, iterable[, initializer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to reduce the sequence
to a single value. For example, reduce((x,y) -> x+y,[1,2,3,4,5]) calculates ((((1+2)+3)+4)+5).
The left argument, x, is the accumulated value and the right argument, y, is the update value from the sequence. If the
optional initializer is present, it is placed before the items of the sequence in the calculation, and serves as a default
when the sequence is empty. If initializer is not given and sequence contains only one item, the first item is returned.

Example

Coconut

prod = reduce$(*)
range(1, 10) |> prod |> print

Python

import operator
import functools
prod = functools.partial(functools.reduce, operator.mul)
print(prod(range(1, 10)))

60 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

3.8.4 takewhile

Coconut provides itertools.takewhile as a built-in under the name takewhile.

Python Docs

takewhile(predicate, iterable)

Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile(predicate, iterable):
takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
for x in iterable:

if predicate(x):
yield x

else:
break

Example

Coconut

negatives = takewhile(numiter, (x) -> x<0)

Python

import itertools
negatives = itertools.takewhile(numiter, lambda x: x<0)

3.8.5 dropwhile

Coconut provides itertools.dropwhile as a built-in under the name dropwhile.

Python Docs

dropwhile(predicate, iterable)

Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every
element. Note: the iterator does not produce any output until the predicate first becomes false, so it may have a
lengthy start-up time. Equivalent to:

def dropwhile(predicate, iterable):
dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
iterable = iter(iterable)
for x in iterable:

if not predicate(x):
yield x
break

for x in iterable:
yield x

3.8. Built-Ins 61

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

positives = dropwhile(numiter, (x) -> x<0)

Python

import itertools
positives = itertools.dropwhile(numiter, lambda x: x<0)

3.8.6 tee

Coconut provides an optimized version of itertools.tee as a built-in under the name tee.

Python Docs

tee(iterable, n=2)

Return n independent iterators from a single iterable. Equivalent to:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):

while True:
if not mydeque: # when the local deque is empty

newval = next(it) # fetch a new value and
for d in deques: # load it to all the deques

d.append(newval)
yield mydeque.popleft()

return tuple(gen(d) for d in deques)

Once tee() has made a split, the original iterable should not be used anywhere else; otherwise, the iterable could
get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be stored). In
general, if one iterator uses most or all of the data before another iterator starts, it is faster to use list() instead of
tee().

Example

Coconut

original, temp = tee(original)
sliced = temp$[5:]

62 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Python

import itertools
original, temp = itertools.tee(original)
sliced = itertools.islice(temp, 5, None)

3.8.7 consume

Coconut provides the consume function to efficiently exhaust an iterator and thus perform any lazy evaluation con-
tained within it. consume takes one optional argument, keep_last, that defaults to 0 and specifies how many, if
any, items from the end to return as an iterable (None will keep all elements). Equivalent to:

def consume(iterable, keep_last=0):
"""Fully exhaust iterable and return the last keep_last elements."""
return collections.deque(iterable, maxlen=keep_last) # fastest way to exhaust an

→˓iterator

Rationale

In the process of lazily applying operations to iterators, eventually a point is reached where evaluation of the iterator is
necessary. To do this efficiently, Coconut provides the consume function, which will fully exhaust the iterator given
to it.

Example

Coconut

range(10) |> map$((x) -> x**2) |> map$(print) |> consume

Python

collections.deque(map(print, map(lambda x: x**2, range(10))), maxlen=0)

3.8.8 count

Coconut provides a modified version of itertools.count that supports in, normal slicing, optimized iterator
slicing, count and index sequence methods, repr, and _start and _step attributes as a built-in under the
name count.

Python Docs

count(start=0, step=1)

Make an iterator that returns evenly spaced values starting with number start. Often used as an argument to map() to
generate consecutive data points. Also, used with zip() to add sequence numbers. Roughly equivalent to:

3.8. Built-Ins 63

Coconut, Release v1.2.0 [Colonel]

def count(start=0, step=1):
count(10) --> 10 11 12 13 14 ...
count(2.5, 0.5) -> 2.5 3.0 3.5 ...
n = start
while True:

yield n
n += step

Example

Coconut

count()$[10**100] |> print

Python

Can’t be done quickly without Coconut’s iterator slicing, which requires many complicated pieces. The necessary
definitions in Python can be found in the Coconut header.

3.8.9 map and zip

Coconut’s map and zip objects are enhanced versions of their Python equivalents that support optimized normal
(and iterator) slicing, reversed, len, repr, and have added attributes which subclasses can make use of to get
at the original arguments to the object (map supports _func and _iters attributes and zip supports the _iters
attribute).

Example

Coconut

map((+), range(5), range(6)) |> len |> print

Python

Can’t be done without defining a custom map type. The full definition of map can be found in the Coconut header.

3.8.10 datamaker

Coconut provides the datamaker function to allow direct access to the base constructor of data types created with
the Coconut data statement. This is particularly useful when writing alternative constructors for data types by
overwriting __new__. Equivalent to:

def datamaker(data_type):
"""Returns base data constructor of data_type."""
return super(data_type, data_type).__new__$(data_type)

64 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Example

Coconut

data trilen(h):
def __new__(cls, a, b):

return (a**2 + b**2)**0.5 |> datamaker(cls)

Python

import collections
class trilen(collections.namedtuple("trilen", "h")):

__slots__ = ()
def __new__(cls, a, b):

return super(cls, cls).__new__(cls, (a**2 + b**2)**0.5)

3.8.11 recursive_iterator

Coconut provides a recursive_iterator decorator that provides significant optimizations for any stateless, re-
cursive function that returns an iterator. To use recursive_iterator on a function, it must meet the following
criteria:

1. your function either always returns an iterator or generates an iterator using yield,

2. when called multiple times with the same arguments, your function produces the same iterator (your function is
stateless),

3. your function calls itself multiple times with the same arguments, and

4. all arguments passed to your function are pickleable (this should almost always be true).

If you are encountering a RuntimeError due to maximum recursion depth, it is highly recommended that you
rewrite your function to meet either the criteria above for recursive_iterator, or the corresponding criteria for
Coconut’s tail call optimization, either of which should prevent such errors.

Furthermore, recursive_iterator also allows the resolution of a nasty segmentation fault in Python’s iterator
logic that has never been fixed. Specifically, instead of writing

seq = get_elem() :: seq

which will crash due to the aforementioned Python issue, write

@recursive_iterator
def seq() = get_elem() :: seq()

which will work just fine.

Example

Coconut

@recursive_iterator
def fib() = (1, 2) :: map((+), fib(), fib()$[1:])

3.8. Built-Ins 65

http://bugs.python.org/issue14010
http://bugs.python.org/issue14010

Coconut, Release v1.2.0 [Colonel]

Python

Can’t be done without a long decorator definition. The full definition of the decorator in Python can be found in the
Coconut header.

3.8.12 parallel_map

Coconut provides a parallel version of map under the name parallel_map. parallel_map makes use of mul-
tiple processes, and is therefore much faster than map for CPU-bound tasks. Use of parallel_map requires
concurrent.futures, which exists in the Python 3 standard library, but under Python 2 will require pip
install futures to function.

Because parallel_map uses multiple processes for its execution, it is necessary that all of its arguments be
pickleable. Only objects defined at the module level, and not lambdas, objects defined inside of a function, or
objects defined inside of the interpreter, are pickleable. Furthermore, on Windows, it is necessary that all calls to
parallel_map occur inside of an if __name__ == "__main__" guard.

Python Docs

parallel_map(func, *iterables)

Equivalent to map(func,*iterables) except func is executed asynchronously and several calls to func may be
made concurrently. If a call raises an exception, then that exception will be raised when its value is retrieved from the
iterator.

Example

Coconut

parallel_map(pow$(2), range(100)) |> list |> print

Python

import functools
import concurrent.futures
with concurrent.futures.ProcessPoolExecutor() as executor:

print(list(executor.map(functools.partial(pow, 2), range(100))))

3.8.13 concurrent_map

Coconut provides a concurrent version of map under the name concurrent_map. concurrent_map makes
use of multiple threads, and is therefore much faster than map for IO-bound tasks. Use of concurrent_map
requires concurrent.futures, which exists in the Python 3 standard library, but under Python 2 will require
pip install futures to function.

66 Chapter 3. Coconut Documentation

Coconut, Release v1.2.0 [Colonel]

Python Docs

concurrent_map(func, *iterables)

Equivalent to map(func,*iterables) except func is executed asynchronously and several calls to func may be
made concurrently. If a call raises an exception, then that exception will be raised when its value is retrieved from the
iterator.

Example

Coconut

concurrent_map(get_data_for_user, get_all_users()) |> list |> print

Python

import functools
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor() as executor:

print(list(executor.map(get_data_for_user, get_all_users())))

3.8.14 MatchError

A MatchError is raised when a destructuring assignment statement fails, and thus MatchError is provided as a
built-in for catching those errors. MatchError objects support two attributes, pattern, which is a string describing
the failed pattern, and value, which is the object that failed to match that pattern.

3.9 Coconut Utilities

3.9.1 Syntax Highlighting

The current options for Coconut syntax highlighting are:

1. use SublimeText (instructions below),

2. use an editor that supports Pygments (instructions below),

3. use coconut.vim, a third-party Vim highlighter,

4. use coconut-mode, a third-party Emacs highlighter, or

5. just treat Coconut as Python.

Instructions on how to set up syntax highlighting for SublimeText and Pygments are included below. If one of the
actual highlighters above doesn’t work, however, it should be sufficient to set up your editor so it interprets all .coco
(also .coc and .coconut, although .coco is the preferred extension) files as Python code, as this should highlight
most of your code well enough.

3.9. Coconut Utilities 67

https://www.sublimetext.com/
http://pygments.org/
https://github.com/manicmaniac/coconut.vim
http://www.vim.org/
https://github.com/NickSeagull/coconut-mode
https://www.gnu.org/software/emacs/

Coconut, Release v1.2.0 [Colonel]

SublimeText

Coconut syntax highlighting for SublimeText requires that Package Control, the standard package manager for Sub-
limeText, be installed. Once that is done, simply:

1. open the SublimeText command palette by pressing Ctrl+Shift+P,

2. enter and select Package Control: Install Package, and

3. finally enter and select Coconut.

To make sure everything is working properly, open a .coco file, and make sure Coconut appears in the bottom
right-hand corner. If something else appears, like Plain Text, click on it, select Open all with current
extension as... at the top of the resulting menu, and then select Coconut.

Pygments

The same pip install coconut command that installs the Coconut command-line utility will also install the
coconut Pygments lexer. How to use this lexer depends on the Pygments-enabled application being used, but in
general simply enter coconut as the language being highlighted and/or use a valid Coconut file extension (.coco,
.coc, or .coconut) and Pygments should be able to figure it out. For example, this documentation is generated
with Sphinx, with the syntax highlighting you see created by adding the line

highlight_language = "coconut"

to Coconut’s conf.py.

3.9.2 coconut.__coconut__

It is sometimes useful to be able to access Coconut built-ins from pure Python. To accomplish this, Coconut provides
coconut.__coconut__, which behaves exactly like the __coconut__.py header file included when Coconut
is compiled in package mode.

All Coconut built-ins are accessible from coconut.__coconut__. The recommended way to import them is to
use from coconut.__coconut__ import and import whatever built-ins you’ll be using.

Example

Python

from coconut.__coconut__ import parallel_map

3.9.3 coconut.convenience

It is sometimes useful to be able to use the Coconut compiler from code, instead of from the command line. The
recommended way to do this is to use from coconut.convenience import and import whatever convenience
functions you’ll be using. Specifications of the different convenience functions are as follows.

68 Chapter 3. Coconut Documentation

https://packagecontrol.io/installation
http://www.sphinx-doc.org/en/stable/

Coconut, Release v1.2.0 [Colonel]

parse

coconut.convenience.parse(code, [mode])

Likely the most useful of the convenience functions, parse takes Coconut code as input and outputs the equivalent
compiled Python code. The second argument, mode, is used to indicate the context for the parsing.

Each mode has two components: what parser it uses, and what header it prepends. The parser determines what Coconut
code is allowed as input, and the header determines how the compiled Python can be used. Possible values of mode
are:

• "exec": (the default)

– parser: file The file parser can parse any Coconut code.

– header: exec When passed to exec at the global level, this header will create all the necessary Coconut
objects.

• "file":

– parser: file

– header: file This header is meant to be written to a --standalone file and should not be passed to
exec.

• "module":

– parser: file

– header: module This header is meant to be written to a --package file and should not be passed to
exec.

• "block":

– parser: file

– header: none No header is included, thus this can only be passed to exec if the exec header has already
been executed at the global level.

• "single":

– parser: single Can only parse one line of Coconut code.

– header: none

• "eval":

– parser: eval Can only parse a Coconut expression, not a statement.

– header: none

• "debug":

– parser: debug Can parse any Coconut code and allows leading whitespace.

– header: none

setup

coconut.convenience.setup(target, strict, minify, line_numbers, keep_lines)

setup can be used to pass command line flags for use in parse. The possible values for each flag argument are:

• target: None (default), or any allowable target

• strict: False (default) or True

3.9. Coconut Utilities 69

Coconut, Release v1.2.0 [Colonel]

• minify: False (default) or True

• line_numbers: False (default) or True

• keep_lines: False (default) or True

cmd

coconut.convenience.cmd(args, [interact])

Executes the given args as if they were fed to coconut on the command-line, with the exception that unless interact is
true or -i is passed, the interpreter will not be started. Additionally, since parse and cmd share the same convenience
parsing object, any changes made to the parsing with cmd will work just as if they were made with setup.

version

coconut.convenience.version([which])

Retrieves a string containing information about the Coconut version. The optional argument which is the type of
version information desired. Possible values of which are:

• "num": the numerical version (the default)

• "name": the version codename

• "spec": the numerical version with the codename attached

• "tag": the version tag used in GitHub and documentation URLs

• "-v": the full string printed by coconut -v

CoconutException

If an error is encountered in a convenience function, a CoconutException instance may be raised.
coconut.convenience.CoconutException is provided to allow catching such errors.

Coconut (coconut-lang.org) is a variant of Python built for simple, elegant, Pythonic functional programming.

Coconut is developed on GitHub and hosted on PyPI. Installing Coconut is as easy as opening a command prompt and
entering:

pip install coconut

after which the entire world of Coconut will be at your disposal. To help you get started, check out these links for
more information about Coconut:

• Tutorial: If you’re new to Coconut, a good place to start is Coconut’s straightforward, easy-to-follow tutorial.

• Documentation: If you’re looking for info about a specific feature, check out Coconut’s comprehensive docu-
mentation.

• FAQ: If you have questions about who Coconut is built for and whether or not you should use it, Coconut’s
frequently asked questions have you covered.

• Create a New Issue: If you’re having a problem with Coconut, creating a new issue detailing the problem will
allow it to be addressed as soon as possible.

• Gitter: For any questions, concerns, or comments about anything Coconut-related, ask around at Coconut’s
Gitter, a GitHub-integrated chat room for Coconut developers.

Note: If the above documentation links are not working, try the mirror .

70 Chapter 3. Coconut Documentation

http://coconut-lang.org/
https://www.python.org/
https://github.com/evhub/coconut
https://pypi.python.org/pypi/coconut
http://coconut.readthedocs.org/en/master/HELP.html
http://coconut.readthedocs.org/en/master/DOCS.html
http://coconut.readthedocs.org/en/master/FAQ.html
https://github.com/evhub/coconut/issues/new
https://gitter.im/evhub/coconut
http://pythonhosted.org/coconut/

	Coconut Frequently Asked Questions
	Can I use Python modules from Coconut and Coconut modules from Python?
	What versions of Python does Coconut support?
	Help! I tried to write a recursive iterator and my Python segfaulted!
	If I'm already perfectly happy with Python, why should I learn Coconut?
	How will I be able to debug my Python if I'm not the one writing it?
	I don't like functional programming, should I still learn Coconut?
	I don't know functional programming, should I still learn Coconut?
	I don't know Python very well, should I still learn Coconut?
	Why isn't Coconut purely functional?
	Won't a transpiled language like Coconut be bad for the Python community?
	I want to contribute to Coconut, how do I get started?
	Why the name Coconut?
	Who developed Coconut?

	Coconut Tutorial
	Introduction
	Installation

	Starting Out
	Using the Interpreter
	Using the Compiler
	Using IPython/ Jupyter
	Case Studies

	Case Study 1: factorial
	Imperative Method
	Recursive Method
	Iterative Method
	addpattern Method

	Case Study 2: quick_sort
	Sorting a Sequence
	Sorting an Iterator

	Case Study 3: vector Part I
	2-Vector
	n-Vector Constructor
	n-Vector Methods

	Case Study 4: vector_field
	diagonal_line
	linearized_plane
	vector_field
	Applications

	Case Study 5: vector Part II
	__truediv__
	.unit
	.angle

	Filling in the Gaps
	Lazy Lists
	Function Composition
	Implicit Partials
	Further Reading

	Coconut Documentation
	Overview
	Compilation
	Installation
	Usage
	Naming Source Files
	Compilation Modes
	Compatible Python Versions
	Allowable Targets
	strict Mode
	IPython/ Jupyter Support

	Operators
	Lambdas
	Partial Application
	Pipeline
	Compose
	Chain
	Iterator Slicing
	Unicode Alternatives

	Keywords
	data
	match
	case
	Backslash-Escaping
	Reserved Variables

	Expressions
	Statement Lambdas
	Lazy Lists
	Implicit Partial Application
	Set Literals
	Imaginary Literals
	Underscore Separators

	Function Notation
	Tail Call Optimization
	Operator Functions
	Assignment Functions
	Infix Functions
	Pattern-Matching Functions

	Statements
	Destructuring Assignment
	Decorators
	else Statements
	except Statements
	Implicit pass
	Parenthetical Continuation
	In-line global And nonlocal Assignment
	Code Passthrough

	Built-Ins
	addpattern
	prepattern
	reduce
	takewhile
	dropwhile
	tee
	consume
	count
	map and zip
	datamaker
	recursive_iterator
	parallel_map
	concurrent_map
	MatchError

	Coconut Utilities
	Syntax Highlighting
	coconut.__coconut__
	coconut.convenience

